Weakly connected systems of Monge–Amper elliptic equations and the problem of existence of
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 27-33
Cet article a éte moissonné depuis la source Math-Net.Ru
A surface $z^i=u^i(x,y)$, $i=1,\dots,k$, projected regularly onto a domain $\Omega$ of the $(x,y)$-plane is considered in a $(k+2)$-dimensional Euclidean space. We introduce natural unit vectors $\xi_i$ directed along the vectors $(u^i_x,u^i_y,0,\dots,0,-1,0,\dots)$, $i=1,\dots,k$, where $-1$ is in the $(2+i)$-coordinate place, and the Killing–Lipschitz curvatures $K^i (x, y)$ with respect to these normal vectors. The problem of construction of a surface with given positive functions $K^i(x,y)$ and a given boundary value $u^i|_{\partial\Omega}=\varphi^i(\sigma)$, where $\sigma$ is the parameter in the curve $\partial\Omega$, is solved.
@article{JMAG_1996_3_1_a2,
author = {B. E. Kantor and V. M. Vereshchagin},
title = {Weakly connected systems of {Monge{\textendash}Amper} elliptic equations and the problem of existence of},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {27--33},
year = {1996},
volume = {3},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a2/}
}
TY - JOUR AU - B. E. Kantor AU - V. M. Vereshchagin TI - Weakly connected systems of Monge–Amper elliptic equations and the problem of existence of JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1996 SP - 27 EP - 33 VL - 3 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a2/ LA - ru ID - JMAG_1996_3_1_a2 ER -
%0 Journal Article %A B. E. Kantor %A V. M. Vereshchagin %T Weakly connected systems of Monge–Amper elliptic equations and the problem of existence of %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 1996 %P 27-33 %V 3 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a2/ %G ru %F JMAG_1996_3_1_a2
B. E. Kantor; V. M. Vereshchagin. Weakly connected systems of Monge–Amper elliptic equations and the problem of existence of. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 27-33. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a2/