Wave operators of Deift–Simon type for a class of Schrödinger evolutions. I
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 169-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We are interested in questions of the scattering theory concerning the asymptotic behaviour of some Schrodinger evolutions. More precisely we present some results of the asymptotic completeness obtained by the method of Deift–Simoh wave operators recently developed in the theory of $N$-body systems. We consider here only the $2$-body case, treating a class of general time-dependent hamiltonians, e.g. $H(t)=H_0+V(t,x)$ with $H_0$ being a second order differential operator witli constant coefficients and $V(t,x)$ decaying suitably when $|x|\to\infty$.
@article{JMAG_1996_3_1_a15,
     author = {L. Zielinski},
     title = {Wave operators of {Deift{\textendash}Simon} type for a class of {Schr\"odinger} {evolutions.~I}},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {169--213},
     year = {1996},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a15/}
}
TY  - JOUR
AU  - L. Zielinski
TI  - Wave operators of Deift–Simon type for a class of Schrödinger evolutions. I
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 169
EP  - 213
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a15/
LA  - en
ID  - JMAG_1996_3_1_a15
ER  - 
%0 Journal Article
%A L. Zielinski
%T Wave operators of Deift–Simon type for a class of Schrödinger evolutions. I
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 169-213
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a15/
%G en
%F JMAG_1996_3_1_a15
L. Zielinski. Wave operators of Deift–Simon type for a class of Schrödinger evolutions. I. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 169-213. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a15/