A note on the Hall–Mergelyan theme
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 164-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mu$ be a measure supported by the points $e^k$, $k=1,2,\dots,$ with the weights $\mu_k=e^{sk^2/2}$ where $s>1$ is a parameter. Then the polynomials are dense in the space$\mathcal L^p(\mu)$ for $p and are not dense in the space $\mathcal L^p(\mu)$ for $p. This answers the question posed by Christian Berg and Jens Peter Reus Christensen.
@article{JMAG_1996_3_1_a14,
     author = {M. L. Sodin},
     title = {A note on the {Hall{\textendash}Mergelyan} theme},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {164--168},
     year = {1996},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a14/}
}
TY  - JOUR
AU  - M. L. Sodin
TI  - A note on the Hall–Mergelyan theme
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 164
EP  - 168
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a14/
LA  - en
ID  - JMAG_1996_3_1_a14
ER  - 
%0 Journal Article
%A M. L. Sodin
%T A note on the Hall–Mergelyan theme
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 164-168
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a14/
%G en
%F JMAG_1996_3_1_a14
M. L. Sodin. A note on the Hall–Mergelyan theme. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 164-168. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a14/