On entire functions of $n$ variables being quasipolynomials in one the variables
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 131-141
Cet article a éte moissonné depuis la source Math-Net.Ru
A general form is found for entire functions $f(z_1,{}^{'}z)$, $z_1\in C$, ${}^{'}z\in C^{n-1}$, of a finite order $p$ that are $M$-quasipolynomials in $z_1$ for every ${}^{'}z$ from a non-pluripolar set $E\in C^{n-1}$, i.e. $f(z_1,{} ^{'}z)=\sum_{j=1}^m\alpha_j(z_1)e^{\lambda_j z_1}$, ${}^{'}z\in E$. Here $m$, $\lambda_j$ and $\alpha_j(z_1)$ depend on ${}^{'}z$ a priori arbitrarily and $\alpha_j(z_1)$ belong to the class $M$ of entire functions of the type $0$ with respect to the order $1$.
@article{JMAG_1996_3_1_a11,
author = {L. I. Ronkin},
title = {On entire functions of~$n$ variables being quasipolynomials in one the variables},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {131--141},
year = {1996},
volume = {3},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a11/}
}
TY - JOUR AU - L. I. Ronkin TI - On entire functions of $n$ variables being quasipolynomials in one the variables JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1996 SP - 131 EP - 141 VL - 3 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a11/ LA - en ID - JMAG_1996_3_1_a11 ER -
L. I. Ronkin. On entire functions of $n$ variables being quasipolynomials in one the variables. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 131-141. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a11/