On entire functions of $n$ variables being quasipolynomials in one the variables
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 131-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A general form is found for entire functions $f(z_1,{}^{'}z)$, $z_1\in C$, ${}^{'}z\in C^{n-1}$, of a finite order $p$ that are $M$-quasipolynomials in $z_1$ for every ${}^{'}z$ from a non-pluripolar set $E\in C^{n-1}$, i.e. $f(z_1,{} ^{'}z)=\sum_{j=1}^m\alpha_j(z_1)e^{\lambda_j z_1}$, ${}^{'}z\in E$. Here $m$, $\lambda_j$ and $\alpha_j(z_1)$ depend on ${}^{'}z$ a priori arbitrarily and $\alpha_j(z_1)$ belong to the class $M$ of entire functions of the type $0$ with respect to the order $1$.
@article{JMAG_1996_3_1_a11,
     author = {L. I. Ronkin},
     title = {On entire functions of~$n$ variables being quasipolynomials in one the variables},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {131--141},
     year = {1996},
     volume = {3},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a11/}
}
TY  - JOUR
AU  - L. I. Ronkin
TI  - On entire functions of $n$ variables being quasipolynomials in one the variables
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 131
EP  - 141
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a11/
LA  - en
ID  - JMAG_1996_3_1_a11
ER  - 
%0 Journal Article
%A L. I. Ronkin
%T On entire functions of $n$ variables being quasipolynomials in one the variables
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 131-141
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a11/
%G en
%F JMAG_1996_3_1_a11
L. I. Ronkin. On entire functions of $n$ variables being quasipolynomials in one the variables. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 131-141. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a11/