Closed convex surfaces in $E^3$ with given functions of curvatures
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 125-130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that there are a regular closed convex surface $S$ and a constant vector $c$ for which the equality $$K^{-1}+H^{-\alpha}+c\mathbf n=\varphi(\mathbf n)$$ is realized at a point with external normal $\mathbf n$. Here $K$ and $H$ are the Gauss and mean curvatures of $S$ at the point with normal $\mathbf n$, $\varphi(\mathbf n)$ is a given regular function on sphere, which satisfies the closeness condition and the inequality $$\operatorname{inf}\varphi>\frac9{32}\biggl[1+\sqrt{1+\frac{64}9(\operatorname{sup}\varphi)^{2-\alpha}}\biggr](\operatorname{sup}\varphi)^{\alpha-1},$$ $\alpha\in(0,1]$. The solution $(S,c)$ is unique with a translation.
@article{JMAG_1996_3_1_a10,
     author = {A. I. Medianik},
     title = {Closed convex surfaces in $E^3$ with given functions of curvatures},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {125--130},
     year = {1996},
     volume = {3},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a10/}
}
TY  - JOUR
AU  - A. I. Medianik
TI  - Closed convex surfaces in $E^3$ with given functions of curvatures
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 1996
SP  - 125
EP  - 130
VL  - 3
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a10/
LA  - ru
ID  - JMAG_1996_3_1_a10
ER  - 
%0 Journal Article
%A A. I. Medianik
%T Closed convex surfaces in $E^3$ with given functions of curvatures
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 1996
%P 125-130
%V 3
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a10/
%G ru
%F JMAG_1996_3_1_a10
A. I. Medianik. Closed convex surfaces in $E^3$ with given functions of curvatures. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 3 (1996) no. 1, pp. 125-130. http://geodesic.mathdoc.fr/item/JMAG_1996_3_1_a10/