On construction of isometric immersions of the domains of Lobachevsky plane $L^2$ into $E^4$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995) no. 3, pp. 319-328
Cet article a éte moissonné depuis la source Math-Net.Ru
Isometric immersions of the Lobachevsky plane $L^2$ into $E^4$, are considered. These immersions are surfaces in $E^4$, which have a vanishing Gaussian torsion. The immersions are constructed by using different solutions of the “sine-Gordon” equation. It is proved that the domains of $L^2$, which are immersed, are parts of the domains bounded by two horocycles or two equidistants. The sizes of the domains under consideration are estimated.
@article{JMAG_1995_2_3_a5,
author = {O. V. Kuznetsov},
title = {On construction of isometric immersions of the domains of {Lobachevsky} plane $L^2$ into $E^4$},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {319--328},
year = {1995},
volume = {2},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a5/}
}
TY - JOUR AU - O. V. Kuznetsov TI - On construction of isometric immersions of the domains of Lobachevsky plane $L^2$ into $E^4$ JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1995 SP - 319 EP - 328 VL - 2 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a5/ LA - ru ID - JMAG_1995_2_3_a5 ER -
O. V. Kuznetsov. On construction of isometric immersions of the domains of Lobachevsky plane $L^2$ into $E^4$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995) no. 3, pp. 319-328. http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a5/