On the relation between the rigidity of order $k>3$ and analytic nonformability of surfaces
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995) no. 3, pp. 456-462
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved, that if every $C^1$-smooth $1$ order infinitesimal deformation of the regular surface of $C^1$-class can be extended to the $(k-1)$ order infinitesimal deformation ($k>3$), then the $k$ order rigidity of this surface implies its analytic nonbending.
@article{JMAG_1995_2_3_a15,
author = {N. G. Perlova},
title = {On the relation between the rigidity of order $k>3$ and analytic nonformability of surfaces},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {456--462},
year = {1995},
volume = {2},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a15/}
}
TY - JOUR AU - N. G. Perlova TI - On the relation between the rigidity of order $k>3$ and analytic nonformability of surfaces JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 1995 SP - 456 EP - 462 VL - 2 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a15/ LA - ru ID - JMAG_1995_2_3_a15 ER -
N. G. Perlova. On the relation between the rigidity of order $k>3$ and analytic nonformability of surfaces. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995) no. 3, pp. 456-462. http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a15/