Analytic and asymptotic properties of multivariate Linnik's distribution
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995) no. 3, pp. 436-455
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with properties of $k$-variate ($k>2$) Linnik's distribution defined by the characteristic function $$\varphi_{\alpha k}(t)=1/(1+|t|^\alpha),\quad0<\alpha<2,\quad t\in\mathrm R^k,$$ where $|t|$ denotes Euclidean norm of vector $t\in\mathrm R^k$. This distribution is absolutely continuous with respect to the Lebesgue measure in $R^k$. Expansions of the density of the distribution into asymptotic and convergent series in powers of $|t|$, $|t|^\alpha$ are obtained. The forms of these expansions depend substantially on the arithmetical nature of the parameter $\alpha$.
@article{JMAG_1995_2_3_a14,
author = {I. V. Ostrovskii},
title = {Analytic and asymptotic properties of multivariate {Linnik's} distribution},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {436--455},
year = {1995},
volume = {2},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a14/}
}
I. V. Ostrovskii. Analytic and asymptotic properties of multivariate Linnik's distribution. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995) no. 3, pp. 436-455. http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a14/