On toroidal submanifolds of constant negative curvature
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995) no. 3, pp. 275-283
Cet article a éte moissonné depuis la source Math-Net.Ru
Earlier M. L. Rabelo and K. Tenenblat have introduced the notion of toroidal submanifolds generated by some curve $\alpha$ and they have constructed immersions of domains of the $n$-dimensional Lobachevsky space $L^n$ in $E^{2n-1}$ as toroidal submanifolds. Here these submanifolds are reconstructed by a simply way, and in the case $n=3$ the influence of the torsion $k$ of the curve $\alpha$ on the geometry of the submanifolds $M^3\subset E^5$ is investigated. Here the torsion appears in the coefficient of torsion of the special normal basis of $M^3$. The Grassmann image of its has been constructed.
@article{JMAG_1995_2_3_a0,
author = {Yu. A. Aminov and M. L. Rabelo},
title = {On toroidal submanifolds of constant negative curvature},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {275--283},
year = {1995},
volume = {2},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a0/}
}
Yu. A. Aminov; M. L. Rabelo. On toroidal submanifolds of constant negative curvature. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 2 (1995) no. 3, pp. 275-283. http://geodesic.mathdoc.fr/item/JMAG_1995_2_3_a0/