Crystals from 5-Vertex Ice Models
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1119-1136
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

Given a partition λ corresponding to a dominant integral weight of sln, we define the structure of crystal on the set of 5-vertex ice models satisfying certain boundary conditions associated to λ. We then show that the resulting crystal is isomorphic to that of the irreducible representation of highest weight λ.
Classification : 17B37, 17B10
Mots-clés : Ice models, crystals
@article{JLT_2018_28_4_JLT_2018_28_4_a9,
     author = {J. Lorca Espiro and L. Volk},
     title = {Crystals from {5-Vertex} {Ice} {Models}},
     journal = {Journal of Lie theory},
     pages = {1119--1136},
     year = {2018},
     volume = {28},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a9/}
}
TY  - JOUR
AU  - J. Lorca Espiro
AU  - L. Volk
TI  - Crystals from 5-Vertex Ice Models
JO  - Journal of Lie theory
PY  - 2018
SP  - 1119
EP  - 1136
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a9/
ID  - JLT_2018_28_4_JLT_2018_28_4_a9
ER  - 
%0 Journal Article
%A J. Lorca Espiro
%A L. Volk
%T Crystals from 5-Vertex Ice Models
%J Journal of Lie theory
%D 2018
%P 1119-1136
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a9/
%F JLT_2018_28_4_JLT_2018_28_4_a9
J. Lorca Espiro; L. Volk. Crystals from 5-Vertex Ice Models. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1119-1136. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a9/