Crystals from 5-Vertex Ice Models
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1119-1136
Given a partition λ corresponding to a dominant integral weight of sln, we define the structure of crystal on the set of 5-vertex ice models satisfying certain boundary conditions associated to λ. We then show that the resulting crystal is isomorphic to that of the irreducible representation of highest weight λ.
Classification :
17B37, 17B10
Mots-clés : Ice models, crystals
Mots-clés : Ice models, crystals
@article{JLT_2018_28_4_JLT_2018_28_4_a9,
author = {J. Lorca Espiro and L. Volk},
title = {Crystals from {5-Vertex} {Ice} {Models}},
journal = {Journal of Lie theory},
pages = {1119--1136},
year = {2018},
volume = {28},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a9/}
}
J. Lorca Espiro; L. Volk. Crystals from 5-Vertex Ice Models. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1119-1136. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a9/