Polynomiality for the Poisson Centre of Truncated Maximal Parabolic Subalgebras
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1063-1094
We study the Poisson centre of truncated maximal parabolic subalgebras of a simple Lie algebra of type B, D or E6. In particular we show that this centre is a polynomial algebra and compute the degrees of its generators. In roughly half of the cases the polynomiality of the Poisson centre was already known by a completely different method. For the rest of the cases, our approach is to construct an algebraic slice in the sense of Kostant given by an adapted pair and the computation of an improved upper bound for the Poisson centre.
Classification :
16W22, 17B22, 17B35
Mots-clés : Poisson centre, parabolic subalgebras, polynomiality, adapted pairs
Mots-clés : Poisson centre, parabolic subalgebras, polynomiality, adapted pairs
@article{JLT_2018_28_4_JLT_2018_28_4_a7,
author = {F. Fauquant-Millet and P. Lamprou},
title = {Polynomiality for the {Poisson} {Centre} of {Truncated} {Maximal} {Parabolic} {Subalgebras}},
journal = {Journal of Lie theory},
pages = {1063--1094},
year = {2018},
volume = {28},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a7/}
}
TY - JOUR AU - F. Fauquant-Millet AU - P. Lamprou TI - Polynomiality for the Poisson Centre of Truncated Maximal Parabolic Subalgebras JO - Journal of Lie theory PY - 2018 SP - 1063 EP - 1094 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a7/ ID - JLT_2018_28_4_JLT_2018_28_4_a7 ER -
F. Fauquant-Millet; P. Lamprou. Polynomiality for the Poisson Centre of Truncated Maximal Parabolic Subalgebras. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1063-1094. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a7/