Polynomiality for the Poisson Centre of Truncated Maximal Parabolic Subalgebras
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1063-1094
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We study the Poisson centre of truncated maximal parabolic subalgebras of a simple Lie algebra of type B, D or E6. In particular we show that this centre is a polynomial algebra and compute the degrees of its generators. In roughly half of the cases the polynomiality of the Poisson centre was already known by a completely different method. For the rest of the cases, our approach is to construct an algebraic slice in the sense of Kostant given by an adapted pair and the computation of an improved upper bound for the Poisson centre.
Classification : 16W22, 17B22, 17B35
Mots-clés : Poisson centre, parabolic subalgebras, polynomiality, adapted pairs
@article{JLT_2018_28_4_JLT_2018_28_4_a7,
     author = {F. Fauquant-Millet and P. Lamprou},
     title = {Polynomiality for the {Poisson} {Centre} of {Truncated} {Maximal} {Parabolic} {Subalgebras}},
     journal = {Journal of Lie theory},
     pages = {1063--1094},
     year = {2018},
     volume = {28},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a7/}
}
TY  - JOUR
AU  - F. Fauquant-Millet
AU  - P. Lamprou
TI  - Polynomiality for the Poisson Centre of Truncated Maximal Parabolic Subalgebras
JO  - Journal of Lie theory
PY  - 2018
SP  - 1063
EP  - 1094
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a7/
ID  - JLT_2018_28_4_JLT_2018_28_4_a7
ER  - 
%0 Journal Article
%A F. Fauquant-Millet
%A P. Lamprou
%T Polynomiality for the Poisson Centre of Truncated Maximal Parabolic Subalgebras
%J Journal of Lie theory
%D 2018
%P 1063-1094
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a7/
%F JLT_2018_28_4_JLT_2018_28_4_a7
F. Fauquant-Millet; P. Lamprou. Polynomiality for the Poisson Centre of Truncated Maximal Parabolic Subalgebras. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1063-1094. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a7/