Stratonovich-Weyl Correspondence for the Generalized Poincaré Group
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1043-1062
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We construct a Stratonovich-Weyl correspondence for each unitary irreducible representation of the generalized Poincar\'e group $ {\mathbb R}^{n+1}\rtimes SO_0(n,1)$ associated with an integral coadjoint orbit with little group $SO(n)$, generalizing some results of J.\,F.\,Cari\~{n}ena, J.\,M.\,Gracia-Bond\`{i}a and J.\,C.\,V\`{a}rilly [J. Phys. A: Math. Gen. 23 (1990) 901--933].
Classification : 81S10, 22E46, 22E45, 81R05
Mots-clés : Poincaré group, coadjoint orbit, unitary representation, Weyl quantization, Berezin quantization, Stratonovich-Weyl correspondence
@article{JLT_2018_28_4_JLT_2018_28_4_a6,
     author = {B. Cahen},
     title = {Stratonovich-Weyl {Correspondence} for the {Generalized} {Poincar\'e} {Group}},
     journal = {Journal of Lie theory},
     pages = {1043--1062},
     year = {2018},
     volume = {28},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a6/}
}
TY  - JOUR
AU  - B. Cahen
TI  - Stratonovich-Weyl Correspondence for the Generalized Poincaré Group
JO  - Journal of Lie theory
PY  - 2018
SP  - 1043
EP  - 1062
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a6/
ID  - JLT_2018_28_4_JLT_2018_28_4_a6
ER  - 
%0 Journal Article
%A B. Cahen
%T Stratonovich-Weyl Correspondence for the Generalized Poincaré Group
%J Journal of Lie theory
%D 2018
%P 1043-1062
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a6/
%F JLT_2018_28_4_JLT_2018_28_4_a6
B. Cahen. Stratonovich-Weyl Correspondence for the Generalized Poincaré Group. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1043-1062. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a6/