Stratonovich-Weyl Correspondence for the Generalized Poincaré Group
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1043-1062
We construct a Stratonovich-Weyl correspondence for each unitary irreducible representation of the generalized Poincar\'e group $ {\mathbb R}^{n+1}\rtimes SO_0(n,1)$ associated with an integral coadjoint orbit with little group $SO(n)$, generalizing some results of J.\,F.\,Cari\~{n}ena, J.\,M.\,Gracia-Bond\`{i}a and J.\,C.\,V\`{a}rilly [J. Phys. A: Math. Gen. 23 (1990) 901--933].
Classification :
81S10, 22E46, 22E45, 81R05
Mots-clés : Poincaré group, coadjoint orbit, unitary representation, Weyl quantization, Berezin quantization, Stratonovich-Weyl correspondence
Mots-clés : Poincaré group, coadjoint orbit, unitary representation, Weyl quantization, Berezin quantization, Stratonovich-Weyl correspondence
@article{JLT_2018_28_4_JLT_2018_28_4_a6,
author = {B. Cahen},
title = {Stratonovich-Weyl {Correspondence} for the {Generalized} {Poincar\'e} {Group}},
journal = {Journal of Lie theory},
pages = {1043--1062},
year = {2018},
volume = {28},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a6/}
}
B. Cahen. Stratonovich-Weyl Correspondence for the Generalized Poincaré Group. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1043-1062. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a6/