Representations Associated to Small Nilpotent Orbits for Real Spin Groups
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 987-1042
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

\newcommand{\tu}{\widetilde} \newcommand{\bbC}{{\mathbb{C}}} \newcommand{\calO}{{\mathcal{O}}} The results in this paper provide a comparison between the $K$-structure of unipotent representations and regular sections of bundles on nilpotent orbits. Precisely, let $\tu{G_0} =\tu{Spin}(a,b)$ with $a+b=2n$, the nonlinear double cover of $Spin(a,b)$, and let $\tu{K}=Spin(a, \bbC)\times Spin(b, \bbC)$ be the complexification of the maximal compact subgroup of $\tu{G _0}$. We consider the nilpotent orbit $\calO_c$ parametrized by $[3 \ 2^{2k} \ 1^{2n-4k-3}]$ with $k>0$. We provide a list of unipotent representations that are genuine, and prove that the list is complete using the coherent continuation representation. Separately we compute $\tu{K}$-spectra of the regular functions on certain real forms $\calO$ of $\calO_c$ transforming according to appropriate characters $\psi$ under $C_{\tu{K}}(\calO)$, and then match them with the $\tu{K}$-types of the genuine unipotent representations. The results provide instances for the orbit philosophy.
Classification : 22E47
Mots-clés : Spin groups, nilpotent orbits, unipotent representations
@article{JLT_2018_28_4_JLT_2018_28_4_a5,
     author = {D. Barbasch and W.-Y. Tsai},
     title = {Representations {Associated} to {Small} {Nilpotent} {Orbits} for {Real} {Spin} {Groups}},
     journal = {Journal of Lie theory},
     pages = {987--1042},
     year = {2018},
     volume = {28},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a5/}
}
TY  - JOUR
AU  - D. Barbasch
AU  - W.-Y. Tsai
TI  - Representations Associated to Small Nilpotent Orbits for Real Spin Groups
JO  - Journal of Lie theory
PY  - 2018
SP  - 987
EP  - 1042
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a5/
ID  - JLT_2018_28_4_JLT_2018_28_4_a5
ER  - 
%0 Journal Article
%A D. Barbasch
%A W.-Y. Tsai
%T Representations Associated to Small Nilpotent Orbits for Real Spin Groups
%J Journal of Lie theory
%D 2018
%P 987-1042
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a5/
%F JLT_2018_28_4_JLT_2018_28_4_a5
D. Barbasch; W.-Y. Tsai. Representations Associated to Small Nilpotent Orbits for Real Spin Groups. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 987-1042. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a5/