Representations Associated to Small Nilpotent Orbits for Real Spin Groups
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 987-1042
\newcommand{\tu}{\widetilde} \newcommand{\bbC}{{\mathbb{C}}} \newcommand{\calO}{{\mathcal{O}}} The results in this paper provide a comparison between the $K$-structure of unipotent representations and regular sections of bundles on nilpotent orbits. Precisely, let $\tu{G_0} =\tu{Spin}(a,b)$ with $a+b=2n$, the nonlinear double cover of $Spin(a,b)$, and let $\tu{K}=Spin(a, \bbC)\times Spin(b, \bbC)$ be the complexification of the maximal compact subgroup of $\tu{G _0}$. We consider the nilpotent orbit $\calO_c$ parametrized by $[3 \ 2^{2k} \ 1^{2n-4k-3}]$ with $k>0$. We provide a list of unipotent representations that are genuine, and prove that the list is complete using the coherent continuation representation. Separately we compute $\tu{K}$-spectra of the regular functions on certain real forms $\calO$ of $\calO_c$ transforming according to appropriate characters $\psi$ under $C_{\tu{K}}(\calO)$, and then match them with the $\tu{K}$-types of the genuine unipotent representations. The results provide instances for the orbit philosophy.
Classification :
22E47
Mots-clés : Spin groups, nilpotent orbits, unipotent representations
Mots-clés : Spin groups, nilpotent orbits, unipotent representations
@article{JLT_2018_28_4_JLT_2018_28_4_a5,
author = {D. Barbasch and W.-Y. Tsai},
title = {Representations {Associated} to {Small} {Nilpotent} {Orbits} for {Real} {Spin} {Groups}},
journal = {Journal of Lie theory},
pages = {987--1042},
year = {2018},
volume = {28},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a5/}
}
TY - JOUR AU - D. Barbasch AU - W.-Y. Tsai TI - Representations Associated to Small Nilpotent Orbits for Real Spin Groups JO - Journal of Lie theory PY - 2018 SP - 987 EP - 1042 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a5/ ID - JLT_2018_28_4_JLT_2018_28_4_a5 ER -
D. Barbasch; W.-Y. Tsai. Representations Associated to Small Nilpotent Orbits for Real Spin Groups. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 987-1042. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a5/