A Note on the Construction of Second-Order Conformally Invariant Systems on Generalized Flag Manifolds
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 969-985
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

An automatic conformal invariance result is proved for systems of second-order differential operators on generalized flag manifolds. The result states that a purely algebraic datum (analogous to the symbol of a differential operator) that has the correct shape to have arisen from a conformally invariant system of second-order operators on a homogeneous line bundle does, in fact, arise from such a system on a suitable bundle.
Classification : 17B10, 22E47, 35R03
Mots-clés : Graded Lie algebra, generalized Verma module
@article{JLT_2018_28_4_JLT_2018_28_4_a4,
     author = {A. C. Kable},
     title = {A {Note} on the {Construction} of {Second-Order} {Conformally} {Invariant} {Systems} on {Generalized} {Flag} {Manifolds}},
     journal = {Journal of Lie theory},
     pages = {969--985},
     year = {2018},
     volume = {28},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a4/}
}
TY  - JOUR
AU  - A. C. Kable
TI  - A Note on the Construction of Second-Order Conformally Invariant Systems on Generalized Flag Manifolds
JO  - Journal of Lie theory
PY  - 2018
SP  - 969
EP  - 985
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a4/
ID  - JLT_2018_28_4_JLT_2018_28_4_a4
ER  - 
%0 Journal Article
%A A. C. Kable
%T A Note on the Construction of Second-Order Conformally Invariant Systems on Generalized Flag Manifolds
%J Journal of Lie theory
%D 2018
%P 969-985
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a4/
%F JLT_2018_28_4_JLT_2018_28_4_a4
A. C. Kable. A Note on the Construction of Second-Order Conformally Invariant Systems on Generalized Flag Manifolds. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 969-985. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a4/