A Note on the Construction of Second-Order Conformally Invariant Systems on Generalized Flag Manifolds
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 969-985
An automatic conformal invariance result is proved for systems of second-order differential operators on generalized flag manifolds. The result states that a purely algebraic datum (analogous to the symbol of a differential operator) that has the correct shape to have arisen from a conformally invariant system of second-order operators on a homogeneous line bundle does, in fact, arise from such a system on a suitable bundle.
Classification :
17B10, 22E47, 35R03
Mots-clés : Graded Lie algebra, generalized Verma module
Mots-clés : Graded Lie algebra, generalized Verma module
@article{JLT_2018_28_4_JLT_2018_28_4_a4,
author = {A. C. Kable},
title = {A {Note} on the {Construction} of {Second-Order} {Conformally} {Invariant} {Systems} on {Generalized} {Flag} {Manifolds}},
journal = {Journal of Lie theory},
pages = {969--985},
year = {2018},
volume = {28},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a4/}
}
TY - JOUR AU - A. C. Kable TI - A Note on the Construction of Second-Order Conformally Invariant Systems on Generalized Flag Manifolds JO - Journal of Lie theory PY - 2018 SP - 969 EP - 985 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a4/ ID - JLT_2018_28_4_JLT_2018_28_4_a4 ER -
A. C. Kable. A Note on the Construction of Second-Order Conformally Invariant Systems on Generalized Flag Manifolds. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 969-985. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a4/