Monomial Bases and Pre-Lie Structure for Free Lie Algebras
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 941-967
We construct a pre-Lie structure on the free Lie algebra L(E) generated by a set E, giving an explicit presentation of L(E) as the quotient of the free pre-Lie algebra TE, generated by the (non-planar) E-decorated rooted trees, by some ideal I. The main result in this paper is a description of Gröbner bases in terms of trees.
Classification :
05C05, 17D25, 17A50, 17B01
Mots-clés : Pre-Lie algebras, NAP algebras, free Lie algebras, monomial bases, rooted trees
Mots-clés : Pre-Lie algebras, NAP algebras, free Lie algebras, monomial bases, rooted trees
@article{JLT_2018_28_4_JLT_2018_28_4_a3,
author = {M. J. H. Al-Kaabi and D. Manchon and F. Patras},
title = {Monomial {Bases} and {Pre-Lie} {Structure} for {Free} {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {941--967},
year = {2018},
volume = {28},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a3/}
}
TY - JOUR AU - M. J. H. Al-Kaabi AU - D. Manchon AU - F. Patras TI - Monomial Bases and Pre-Lie Structure for Free Lie Algebras JO - Journal of Lie theory PY - 2018 SP - 941 EP - 967 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a3/ ID - JLT_2018_28_4_JLT_2018_28_4_a3 ER -
M. J. H. Al-Kaabi; D. Manchon; F. Patras. Monomial Bases and Pre-Lie Structure for Free Lie Algebras. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 941-967. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a3/