Extending Generalized Spin Representations
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 915-94 Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We revisit the construction of higher spin representations by Kleinschmidt and Nicolai for E10, generalize it to arbitrary simply laced types, and provide a coordinate-free approach to the (3/2)-spin and (5/2)-spin representations. Moreover, we discuss the relationship between our findings and the representation theory of Sym3 pointed out to us by Levy.
Classification : 17B67, 81R10
Mots-clés : Simply laced real Kac-Moody algebra, spin representation
@article{JLT_2018_28_4_JLT_2018_28_4_a2,
     author = {R. Lautenbacher and R. K\"ohl},
     title = {Extending {Generalized} {Spin} {Representations}},
     journal = {Journal of Lie theory},
     pages = {915--94},
     year = {2018},
     volume = {28},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a2/}
}
TY  - JOUR
AU  - R. Lautenbacher
AU  - R. Köhl
TI  - Extending Generalized Spin Representations
JO  - Journal of Lie theory
PY  - 2018
SP  - 915
EP  - 94
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a2/
ID  - JLT_2018_28_4_JLT_2018_28_4_a2
ER  - 
%0 Journal Article
%A R. Lautenbacher
%A R. Köhl
%T Extending Generalized Spin Representations
%J Journal of Lie theory
%D 2018
%P 915-94
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a2/
%F JLT_2018_28_4_JLT_2018_28_4_a2
R. Lautenbacher; R. Köhl. Extending Generalized Spin Representations. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 915-94. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a2/