Extending Generalized Spin Representations
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 915-94
Cet article a éte moissonné depuis la source Heldermann Verlag
We revisit the construction of higher spin representations by Kleinschmidt and Nicolai for E10, generalize it to arbitrary simply laced types, and provide a coordinate-free approach to the (3/2)-spin and (5/2)-spin representations. Moreover, we discuss the relationship between our findings and the representation theory of Sym3 pointed out to us by Levy.
Classification :
17B67, 81R10
Mots-clés : Simply laced real Kac-Moody algebra, spin representation
Mots-clés : Simply laced real Kac-Moody algebra, spin representation
@article{JLT_2018_28_4_JLT_2018_28_4_a2,
author = {R. Lautenbacher and R. K\"ohl},
title = {Extending {Generalized} {Spin} {Representations}},
journal = {Journal of Lie theory},
pages = {915--94},
year = {2018},
volume = {28},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a2/}
}
R. Lautenbacher; R. Köhl. Extending Generalized Spin Representations. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 915-94. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a2/