Codimension Growth of Solvable Lie Superalgebras
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1189-1199
We study numerical invariants of identities of finite-dimensional solvable Lie superalgebras. We define new series of finite-dimensional solvable Lie superalgebras L with non-nilpotent derived subalgebra $L'$ and discuss their codimension growth. For the first algebra of this series we prove the existence and integrality of exp(L).
Classification :
17B01, 16P90, 15A30, 16R10
Mots-clés : Polynomial identities, Lie superalgebras, graded identities, codimensions, exponential growth
Mots-clés : Polynomial identities, Lie superalgebras, graded identities, codimensions, exponential growth
@article{JLT_2018_28_4_JLT_2018_28_4_a13,
author = {D. D. Repovs and M. V. Zaicev},
title = {Codimension {Growth} of {Solvable} {Lie} {Superalgebras}},
journal = {Journal of Lie theory},
pages = {1189--1199},
year = {2018},
volume = {28},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a13/}
}
D. D. Repovs; M. V. Zaicev. Codimension Growth of Solvable Lie Superalgebras. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1189-1199. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a13/