Codimension Growth of Solvable Lie Superalgebras
Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1189-1199
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We study numerical invariants of identities of finite-dimensional solvable Lie superalgebras. We define new series of finite-dimensional solvable Lie superalgebras L with non-nilpotent derived subalgebra $L'$ and discuss their codimension growth. For the first algebra of this series we prove the existence and integrality of exp(L).
Classification : 17B01, 16P90, 15A30, 16R10
Mots-clés : Polynomial identities, Lie superalgebras, graded identities, codimensions, exponential growth
@article{JLT_2018_28_4_JLT_2018_28_4_a13,
     author = {D. D. Repovs and M. V. Zaicev},
     title = {Codimension {Growth} of {Solvable} {Lie} {Superalgebras}},
     journal = {Journal of Lie theory},
     pages = {1189--1199},
     year = {2018},
     volume = {28},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a13/}
}
TY  - JOUR
AU  - D. D. Repovs
AU  - M. V. Zaicev
TI  - Codimension Growth of Solvable Lie Superalgebras
JO  - Journal of Lie theory
PY  - 2018
SP  - 1189
EP  - 1199
VL  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a13/
ID  - JLT_2018_28_4_JLT_2018_28_4_a13
ER  - 
%0 Journal Article
%A D. D. Repovs
%A M. V. Zaicev
%T Codimension Growth of Solvable Lie Superalgebras
%J Journal of Lie theory
%D 2018
%P 1189-1199
%V 28
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a13/
%F JLT_2018_28_4_JLT_2018_28_4_a13
D. D. Repovs; M. V. Zaicev. Codimension Growth of Solvable Lie Superalgebras. Journal of Lie theory, Tome 28 (2018) no. 4, pp. 1189-1199. http://geodesic.mathdoc.fr/item/JLT_2018_28_4_JLT_2018_28_4_a13/