Convolution of Orbital Measures on Complex Grassmannians
Journal of Lie theory, Tome 28 (2018) no. 3, pp. 695-71
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

In recent papers by B. Anchouche, S. K. Gupta, and A. Plagne [{\it Orbital measures on} $SU(2)/SO(2)$, Monatshefte Math. 178 (2015) 493--520] and B. Anchouche, and S. K. Gupta [{\it Smoothness of the Radon-Nikodym derivative of a convolution of orbital measures on compact symmetric spaces of rank one}, Asian J. Math., to appear], the regularity of the Radon-Nikodym derivative of the convolutions of orbital measures on a compact symmetric space of rank one was studied. The aim of this paper is to extend the results obtained in the second paper to the case of complex Grassmannians. More precisely, let $M=U/K$, where $U=SU(p+q)$ and $K=S(U(p)\times U(q))$, be the complex Grassmannian of a $p$-plane in $\mathbb{C}^{p+q}$, $p\geq q\geq2$, $a_{1},..., a_{r}$ be $r$ points in $U$, and consider the convolution product $\nu_{a_{1}}\ast... \ast \nu_{a_{r}}$ of the orbital measures $\nu_{a_{1}},...,\nu_{a_{r}}$ supported on $Ka_{1}K,...,$ $Ka_{r}K$. By a result of D. Ragozin [{\it Zonal measure algebras on isotropy irreducible homogeneous spaces}, J. Func. Anal. 17(4) (1974) 355--376], if $r\geq\dim M,$ then $\nu_{a_{1}}\ast...\ast\nu_{a_{r}}$ is absolutely continuous with respect to the Haar measure of $U$. The aim of this paper is to investigate the $C^{k}-$regularity of the Radon-Nikodym derivative of $\nu_{a_{1}}\ast...\ast\nu_{a_{r}}$ with respect to the Haar measure of $U$.
Classification : 43A77, 43A90, 53C35, 28C10
Mots-clés : Convolution of orbital measures, Grassmannians, spherical functions, Radon-Nikodym derivative
@article{JLT_2018_28_3_JLT_2018_28_3_a5,
     author = {M. Al-Hashami and B. Anchouche},
     title = {Convolution of {Orbital} {Measures} on {Complex} {Grassmannians}},
     journal = {Journal of Lie theory},
     pages = {695--71},
     year = {2018},
     volume = {28},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a5/}
}
TY  - JOUR
AU  - M. Al-Hashami
AU  - B. Anchouche
TI  - Convolution of Orbital Measures on Complex Grassmannians
JO  - Journal of Lie theory
PY  - 2018
SP  - 695
EP  - 71
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a5/
ID  - JLT_2018_28_3_JLT_2018_28_3_a5
ER  - 
%0 Journal Article
%A M. Al-Hashami
%A B. Anchouche
%T Convolution of Orbital Measures on Complex Grassmannians
%J Journal of Lie theory
%D 2018
%P 695-71
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a5/
%F JLT_2018_28_3_JLT_2018_28_3_a5
M. Al-Hashami; B. Anchouche. Convolution of Orbital Measures on Complex Grassmannians. Journal of Lie theory, Tome 28 (2018) no. 3, pp. 695-71. http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a5/