Principal Subspaces for Double Yangian DY(sl2)
Journal of Lie theory, Tome 28 (2018) no. 3, pp. 673-694
We consider the realization of level $1$ infinite-dimensional modules for the double Yangian DY$({\frak s}{\frak l}_2)$ found by K. Iohara. We use the corresponding vertex operators to generate a family of nonlocal $h$-vertex algebras $W_N$, $N\in\mathbb{Z}_{\ge0}$. Finally, we construct combinatorial bases of $W_N$ and establish a connection with the sum side of the Rogers-Ramanujan identity.
Classification :
17B37, 17B69
Mots-clés : Combinatorial basis, double Yangian, principal subspace, quantum vertex algebra
Mots-clés : Combinatorial basis, double Yangian, principal subspace, quantum vertex algebra
@article{JLT_2018_28_3_JLT_2018_28_3_a4,
author = {S. Kozic},
title = {Principal {Subspaces} for {Double} {Yangian} {DY(sl\protect\textsubscript{2})}},
journal = {Journal of Lie theory},
pages = {673--694},
year = {2018},
volume = {28},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a4/}
}
S. Kozic. Principal Subspaces for Double Yangian DY(sl2). Journal of Lie theory, Tome 28 (2018) no. 3, pp. 673-694. http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a4/