Principal Subspaces for Double Yangian DY(sl2)
Journal of Lie theory, Tome 28 (2018) no. 3, pp. 673-694
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We consider the realization of level $1$ infinite-dimensional modules for the double Yangian DY$({\frak s}{\frak l}_2)$ found by K. Iohara. We use the corresponding vertex operators to generate a family of nonlocal $h$-vertex algebras $W_N$, $N\in\mathbb{Z}_{\ge0}$. Finally, we construct combinatorial bases of $W_N$ and establish a connection with the sum side of the Rogers-Ramanujan identity.
Classification : 17B37, 17B69
Mots-clés : Combinatorial basis, double Yangian, principal subspace, quantum vertex algebra
@article{JLT_2018_28_3_JLT_2018_28_3_a4,
     author = {S. Kozic},
     title = {Principal {Subspaces} for {Double} {Yangian} {DY(sl\protect\textsubscript{2})}},
     journal = {Journal of Lie theory},
     pages = {673--694},
     year = {2018},
     volume = {28},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a4/}
}
TY  - JOUR
AU  - S. Kozic
TI  - Principal Subspaces for Double Yangian DY(sl2)
JO  - Journal of Lie theory
PY  - 2018
SP  - 673
EP  - 694
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a4/
ID  - JLT_2018_28_3_JLT_2018_28_3_a4
ER  - 
%0 Journal Article
%A S. Kozic
%T Principal Subspaces for Double Yangian DY(sl2)
%J Journal of Lie theory
%D 2018
%P 673-694
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a4/
%F JLT_2018_28_3_JLT_2018_28_3_a4
S. Kozic. Principal Subspaces for Double Yangian DY(sl2). Journal of Lie theory, Tome 28 (2018) no. 3, pp. 673-694. http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a4/