Cyclic Orders Defined by Ordered Jordan Algebras
Journal of Lie theory, Tome 28 (2018) no. 3, pp. 643-661 Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We define a general notion of partially ordered Jordan algebra over a partially ordered ring, and we show that the Jordan geometry associated to such a Jordan algebra admits a natural invariant partial cyclic order, whose intervals are modelled on the symmetric cone of the Jordan algebra. We define and describe, by affine images of intervals, the interval topology on the Jordan geometry, and we outline a research program aiming at generalizing main features of the theory of classical symmetric cones and bounded symmetric domains.
Classification : 06F25, 15B48, 17C37, 32M15, 53C35, 51G05
Mots-clés : Partial cyclic order, partial order, symmetric cone, partially ordered ring, interval topology, partially ordered Jordan algebra, Jordan geometry
@article{JLT_2018_28_3_JLT_2018_28_3_a2,
     author = {W. Bertram},
     title = {Cyclic {Orders} {Defined} by {Ordered} {Jordan} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {643--661},
     year = {2018},
     volume = {28},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a2/}
}
TY  - JOUR
AU  - W. Bertram
TI  - Cyclic Orders Defined by Ordered Jordan Algebras
JO  - Journal of Lie theory
PY  - 2018
SP  - 643
EP  - 661
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a2/
ID  - JLT_2018_28_3_JLT_2018_28_3_a2
ER  - 
%0 Journal Article
%A W. Bertram
%T Cyclic Orders Defined by Ordered Jordan Algebras
%J Journal of Lie theory
%D 2018
%P 643-661
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a2/
%F JLT_2018_28_3_JLT_2018_28_3_a2
W. Bertram. Cyclic Orders Defined by Ordered Jordan Algebras. Journal of Lie theory, Tome 28 (2018) no. 3, pp. 643-661. http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a2/