Biderivations and Commuting Linear Maps on Lie Algebras
Journal of Lie theory, Tome 28 (2018) no. 3, pp. 885-9
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

Let \,$L$ \,be a Lie algebra over a commutative unital ring $F$ contai\-ning $\frac{1}{2}$. If $L$ is perfect and centerless, then every skew-symmetric biderivation $\delta\colon L\times L\to L$ is of the form $\delta(x,y)=\gamma([x,y])$ for all $x,y\in L$, where $\gamma\in{\rm Cent}(L)$, the centroid of $L$. Under a milder assumption that $[c,[L,L]]=\{0\}$ implies $c=0$, every commuting linear map from $L$ to $L$ lies in ${\rm Cent}(L)$. These two results are special cases of our main theorems which concern biderivations and commuting linear maps having their ranges in an $L$-module. We provide a variety of examples, some of them showing the necessity of our assumptions and some of them showing that our results cover several results from the literature.
Classification : 17B05, 17B40, 16R60
Mots-clés : Lie algebra, biderivation, commuting linear map, centroid
@article{JLT_2018_28_3_JLT_2018_28_3_a15,
     author = {M. Bresar and K. Zhao},
     title = {Biderivations and {Commuting} {Linear} {Maps} on {Lie} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {885--9},
     year = {2018},
     volume = {28},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a15/}
}
TY  - JOUR
AU  - M. Bresar
AU  - K. Zhao
TI  - Biderivations and Commuting Linear Maps on Lie Algebras
JO  - Journal of Lie theory
PY  - 2018
SP  - 885
EP  - 9
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a15/
ID  - JLT_2018_28_3_JLT_2018_28_3_a15
ER  - 
%0 Journal Article
%A M. Bresar
%A K. Zhao
%T Biderivations and Commuting Linear Maps on Lie Algebras
%J Journal of Lie theory
%D 2018
%P 885-9
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a15/
%F JLT_2018_28_3_JLT_2018_28_3_a15
M. Bresar; K. Zhao. Biderivations and Commuting Linear Maps on Lie Algebras. Journal of Lie theory, Tome 28 (2018) no. 3, pp. 885-9. http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a15/