Harmonic Analysis for an Olshanski Pair Consisting of Stabilizers of the Horocycles of a Homogeneous Tree
Journal of Lie theory, Tome 28 (2018) no. 3, pp. 609-618
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

The classification of the irreducible unitary representations of the stabilizer of the horocycles of a homogeneous tree of finite degree is well-known. In this article we use these stabilizers to form an Olshanski pair and then find all spherical functions of this pair. Finally we give realizations of the corresponding irreducible unitary representations.
Classification : 20E08, 22A10, 43A65, 43A90
Mots-clés : Olshanski spherical pair, spherical function, spherical representation, automorphism group, homogeneous tree
@article{JLT_2018_28_3_JLT_2018_28_3_a0,
     author = {S. C. Celik and S. Demir},
     title = {Harmonic {Analysis} for an {Olshanski} {Pair} {Consisting} of {Stabilizers} of the {Horocycles} of a {Homogeneous} {Tree}},
     journal = {Journal of Lie theory},
     pages = {609--618},
     year = {2018},
     volume = {28},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a0/}
}
TY  - JOUR
AU  - S. C. Celik
AU  - S. Demir
TI  - Harmonic Analysis for an Olshanski Pair Consisting of Stabilizers of the Horocycles of a Homogeneous Tree
JO  - Journal of Lie theory
PY  - 2018
SP  - 609
EP  - 618
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a0/
ID  - JLT_2018_28_3_JLT_2018_28_3_a0
ER  - 
%0 Journal Article
%A S. C. Celik
%A S. Demir
%T Harmonic Analysis for an Olshanski Pair Consisting of Stabilizers of the Horocycles of a Homogeneous Tree
%J Journal of Lie theory
%D 2018
%P 609-618
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a0/
%F JLT_2018_28_3_JLT_2018_28_3_a0
S. C. Celik; S. Demir. Harmonic Analysis for an Olshanski Pair Consisting of Stabilizers of the Horocycles of a Homogeneous Tree. Journal of Lie theory, Tome 28 (2018) no. 3, pp. 609-618. http://geodesic.mathdoc.fr/item/JLT_2018_28_3_JLT_2018_28_3_a0/