The Universal Enveloping Algebra U(sl2 sdir V2), its Prime Spectrum and a Classification of its Simple Weight Modules
Journal of Lie theory, Tome 28 (2018) no. 2, pp. 525-56
\def\l{{\frak l}} \def\s{{\frak s}} \def\sdir#1{\hbox{$\mathrel\times{\hskip -4.3pt {\vrule height 4.0 pt depth 0 pt}}\hskip 2pt_{#1}$}} For the enveloping algebra $A$ of the Lie algebra $\s\l_2\sdir{}V_2$, explicit descriptions of its prime, primitive, completely prime and maximal spectra are given. A classification of simple weight $\s\l_2\sdir{}V_2$-modules is given. Generators and defining relations are found for the centralizer $C_A(H)$ in $A$ of the Cartan element $H$ of $\s\l_2\sdir{}V_2 $. Explicit descriptions of the prime, primitive, completely prime and maximal spectra of $C_A(H)$ are given. Simple $C_A(H)$-modules are classified.
Classification :
17B10, 16D25, 16D60, 16D70, 16P50
Mots-clés : Prime ideal, primitive ideal, weight module, simple module, centralizer
Mots-clés : Prime ideal, primitive ideal, weight module, simple module, centralizer
@article{JLT_2018_28_2_JLT_2018_28_2_a9,
author = {V. V. Bavula and T. Lu},
title = {The {Universal} {Enveloping} {Algebra} {U(sl\protect\textsubscript{2}} sdir {V\protect\textsubscript{2}),} its {Prime} {Spectrum} and a {Classification} of its {Simple} {Weight} {Modules}},
journal = {Journal of Lie theory},
pages = {525--56},
year = {2018},
volume = {28},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a9/}
}
TY - JOUR AU - V. V. Bavula AU - T. Lu TI - The Universal Enveloping Algebra U(sl2 sdir V2), its Prime Spectrum and a Classification of its Simple Weight Modules JO - Journal of Lie theory PY - 2018 SP - 525 EP - 56 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a9/ ID - JLT_2018_28_2_JLT_2018_28_2_a9 ER -
%0 Journal Article %A V. V. Bavula %A T. Lu %T The Universal Enveloping Algebra U(sl2 sdir V2), its Prime Spectrum and a Classification of its Simple Weight Modules %J Journal of Lie theory %D 2018 %P 525-56 %V 28 %N 2 %U http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a9/ %F JLT_2018_28_2_JLT_2018_28_2_a9
V. V. Bavula; T. Lu. The Universal Enveloping Algebra U(sl2 sdir V2), its Prime Spectrum and a Classification of its Simple Weight Modules. Journal of Lie theory, Tome 28 (2018) no. 2, pp. 525-56. http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a9/