Représentations de Réduction Unipotente pour SO(2n+1), I: une Involution
Journal of Lie theory, Tome 28 (2018) no. 2, pp. 381-426
Cet article a éte moissonné depuis la source Heldermann Verlag
We consider a group SO(2n+1) over a p-adic field and tempered irreducible representations of this group, of unipotent reduction. We use the construction due to Lusztig of these representations. In an old paper with Moeglin, we have defined an involution in the complex vector space generated by those representations which are elliptic. It is strongly related to another involution defined by Lusztig for finite groups. We give a new definition of our involution and we prove it commutes, in some sense, with Jacquet functor.
Classification :
22E50
Mots-clés : Representations of unipotent reduction, endoscopy
Mots-clés : Representations of unipotent reduction, endoscopy
@article{JLT_2018_28_2_JLT_2018_28_2_a4,
author = {J.-L. Waldspurger},
title = {Repr\'esentations de {R\'eduction} {Unipotente} pour {SO(2n+1),} {I:} une {Involution}},
journal = {Journal of Lie theory},
pages = {381--426},
year = {2018},
volume = {28},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a4/}
}
J.-L. Waldspurger. Représentations de Réduction Unipotente pour SO(2n+1), I: une Involution. Journal of Lie theory, Tome 28 (2018) no. 2, pp. 381-426. http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a4/