Structures of Nichols (Braided) Lie Algebras of Diagonal Type
Journal of Lie theory, Tome 28 (2018) no. 2, pp. 357-38 Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

\def\B{{\frak B}} \def\L{{\frak L}} Let $V$ be a braided vector space of diagonal type. Let $\B(V)$, $\L^-(V)$ and $\L(V)$ be the Nichols algebra, Nichols Lie algebra and Nichols braided Lie algebra over $V$, respectively. We show that a monomial belongs to $\L(V)$ if and only if this monomial is connected. We obtain the basis for $\L(V)$ of arithmetic root systems and the dimension of $\L(V)$ of finite Cartan type. We give the sufficient and necessary conditions for $\B(V) = F\oplus \L^-(V)$ and $\L^-(V)= \L(V)$. We obtain an explicit basis for $\L^ - (V)$ over the quantum linear space $V$ with $\dim V=2$.
Classification : 16W30, 16G10
Mots-clés : Braided vector space, Nichols algebra, Nichols braided Lie algebra, graph
@article{JLT_2018_28_2_JLT_2018_28_2_a3,
     author = {W. Wu and J. Wang and S. Zhang and Y.-Z. Zhang},
     title = {Structures of {Nichols} {(Braided)} {Lie} {Algebras} of {Diagonal} {Type}},
     journal = {Journal of Lie theory},
     pages = {357--38},
     year = {2018},
     volume = {28},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a3/}
}
TY  - JOUR
AU  - W. Wu
AU  - J. Wang
AU  - S. Zhang
AU  - Y.-Z. Zhang
TI  - Structures of Nichols (Braided) Lie Algebras of Diagonal Type
JO  - Journal of Lie theory
PY  - 2018
SP  - 357
EP  - 38
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a3/
ID  - JLT_2018_28_2_JLT_2018_28_2_a3
ER  - 
%0 Journal Article
%A W. Wu
%A J. Wang
%A S. Zhang
%A Y.-Z. Zhang
%T Structures of Nichols (Braided) Lie Algebras of Diagonal Type
%J Journal of Lie theory
%D 2018
%P 357-38
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a3/
%F JLT_2018_28_2_JLT_2018_28_2_a3
W. Wu; J. Wang; S. Zhang; Y.-Z. Zhang. Structures of Nichols (Braided) Lie Algebras of Diagonal Type. Journal of Lie theory, Tome 28 (2018) no. 2, pp. 357-38. http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a3/