Structures of Nichols (Braided) Lie Algebras of Diagonal Type
Journal of Lie theory, Tome 28 (2018) no. 2, pp. 357-38
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\B{{\frak B}} \def\L{{\frak L}} Let $V$ be a braided vector space of diagonal type. Let $\B(V)$, $\L^-(V)$ and $\L(V)$ be the Nichols algebra, Nichols Lie algebra and Nichols braided Lie algebra over $V$, respectively. We show that a monomial belongs to $\L(V)$ if and only if this monomial is connected. We obtain the basis for $\L(V)$ of arithmetic root systems and the dimension of $\L(V)$ of finite Cartan type. We give the sufficient and necessary conditions for $\B(V) = F\oplus \L^-(V)$ and $\L^-(V)= \L(V)$. We obtain an explicit basis for $\L^ - (V)$ over the quantum linear space $V$ with $\dim V=2$.
Classification :
16W30, 16G10
Mots-clés : Braided vector space, Nichols algebra, Nichols braided Lie algebra, graph
Mots-clés : Braided vector space, Nichols algebra, Nichols braided Lie algebra, graph
@article{JLT_2018_28_2_JLT_2018_28_2_a3,
author = {W. Wu and J. Wang and S. Zhang and Y.-Z. Zhang},
title = {Structures of {Nichols} {(Braided)} {Lie} {Algebras} of {Diagonal} {Type}},
journal = {Journal of Lie theory},
pages = {357--38},
year = {2018},
volume = {28},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a3/}
}
TY - JOUR AU - W. Wu AU - J. Wang AU - S. Zhang AU - Y.-Z. Zhang TI - Structures of Nichols (Braided) Lie Algebras of Diagonal Type JO - Journal of Lie theory PY - 2018 SP - 357 EP - 38 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a3/ ID - JLT_2018_28_2_JLT_2018_28_2_a3 ER -
W. Wu; J. Wang; S. Zhang; Y.-Z. Zhang. Structures of Nichols (Braided) Lie Algebras of Diagonal Type. Journal of Lie theory, Tome 28 (2018) no. 2, pp. 357-38. http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a3/