Heisenberg Algebras from Division Algebras and Parabolic Subalgebras of Simple Lie Algebras
Journal of Lie theory, Tome 28 (2018) no. 2, pp. 561-575
Every real simple Lie algebra which is not compact or isomorphic to so(1,n) contains a unique standard parabolic subalgebra whose nilradical is a Heisenberg-like algebra associated to a division algebra. Some geometric consequences are discussed.
Classification :
22E25, 58A30, 17C60
Mots-clés : Heisenberg, parabolic subalgebras, distributions
Mots-clés : Heisenberg, parabolic subalgebras, distributions
@article{JLT_2018_28_2_JLT_2018_28_2_a10,
author = {A. Kaplan and M. Subils},
title = {Heisenberg {Algebras} from {Division} {Algebras} and {Parabolic} {Subalgebras} of {Simple} {Lie} {Algebras}},
journal = {Journal of Lie theory},
pages = {561--575},
year = {2018},
volume = {28},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a10/}
}
TY - JOUR AU - A. Kaplan AU - M. Subils TI - Heisenberg Algebras from Division Algebras and Parabolic Subalgebras of Simple Lie Algebras JO - Journal of Lie theory PY - 2018 SP - 561 EP - 575 VL - 28 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a10/ ID - JLT_2018_28_2_JLT_2018_28_2_a10 ER -
A. Kaplan; M. Subils. Heisenberg Algebras from Division Algebras and Parabolic Subalgebras of Simple Lie Algebras. Journal of Lie theory, Tome 28 (2018) no. 2, pp. 561-575. http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a10/