Heisenberg Algebras from Division Algebras and Parabolic Subalgebras of Simple Lie Algebras
Journal of Lie theory, Tome 28 (2018) no. 2, pp. 561-575
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

Every real simple Lie algebra which is not compact or isomorphic to so(1,n) contains a unique standard parabolic subalgebra whose nilradical is a Heisenberg-like algebra associated to a division algebra. Some geometric consequences are discussed.
Classification : 22E25, 58A30, 17C60
Mots-clés : Heisenberg, parabolic subalgebras, distributions
@article{JLT_2018_28_2_JLT_2018_28_2_a10,
     author = {A. Kaplan and M. Subils},
     title = {Heisenberg {Algebras} from {Division} {Algebras} and {Parabolic} {Subalgebras} of {Simple} {Lie} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {561--575},
     year = {2018},
     volume = {28},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a10/}
}
TY  - JOUR
AU  - A. Kaplan
AU  - M. Subils
TI  - Heisenberg Algebras from Division Algebras and Parabolic Subalgebras of Simple Lie Algebras
JO  - Journal of Lie theory
PY  - 2018
SP  - 561
EP  - 575
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a10/
ID  - JLT_2018_28_2_JLT_2018_28_2_a10
ER  - 
%0 Journal Article
%A A. Kaplan
%A M. Subils
%T Heisenberg Algebras from Division Algebras and Parabolic Subalgebras of Simple Lie Algebras
%J Journal of Lie theory
%D 2018
%P 561-575
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a10/
%F JLT_2018_28_2_JLT_2018_28_2_a10
A. Kaplan; M. Subils. Heisenberg Algebras from Division Algebras and Parabolic Subalgebras of Simple Lie Algebras. Journal of Lie theory, Tome 28 (2018) no. 2, pp. 561-575. http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a10/