Poisson Centralizer of the Trace
Journal of Lie theory, Tome 28 (2018) no. 2, pp. 309-322
Cet article a éte moissonné depuis la source Heldermann Verlag
The Poisson centralizer of the i-th trace element is determined in the coordinate ring of SLn endowed with the Poisson structure obtained as the semiclassical limit of its quantized coordinate ring. It turns out that this maximal Poisson-commutative subalgebra coincides with the subalgebra of invariants with respect to the adjoint action.
Classification :
16T20, 17B63, 16W70, 20G42
Mots-clés : Quantized coordinate ring, semiclassical limit, Poisson algebra, complete involutive system, maximal Poisson-commutative subalgebra
Mots-clés : Quantized coordinate ring, semiclassical limit, Poisson algebra, complete involutive system, maximal Poisson-commutative subalgebra
@article{JLT_2018_28_2_JLT_2018_28_2_a0,
author = {S. M\'esz\'aros},
title = {Poisson {Centralizer} of the {Trace}},
journal = {Journal of Lie theory},
pages = {309--322},
year = {2018},
volume = {28},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a0/}
}
S. Mészáros. Poisson Centralizer of the Trace. Journal of Lie theory, Tome 28 (2018) no. 2, pp. 309-322. http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a0/