Poisson Centralizer of the Trace
Journal of Lie theory, Tome 28 (2018) no. 2, pp. 309-322 Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

The Poisson centralizer of the i-th trace element is determined in the coordinate ring of SLn endowed with the Poisson structure obtained as the semiclassical limit of its quantized coordinate ring. It turns out that this maximal Poisson-commutative subalgebra coincides with the subalgebra of invariants with respect to the adjoint action.
Classification : 16T20, 17B63, 16W70, 20G42
Mots-clés : Quantized coordinate ring, semiclassical limit, Poisson algebra, complete involutive system, maximal Poisson-commutative subalgebra
@article{JLT_2018_28_2_JLT_2018_28_2_a0,
     author = {S. M\'esz\'aros},
     title = {Poisson {Centralizer} of the {Trace}},
     journal = {Journal of Lie theory},
     pages = {309--322},
     year = {2018},
     volume = {28},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a0/}
}
TY  - JOUR
AU  - S. Mészáros
TI  - Poisson Centralizer of the Trace
JO  - Journal of Lie theory
PY  - 2018
SP  - 309
EP  - 322
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a0/
ID  - JLT_2018_28_2_JLT_2018_28_2_a0
ER  - 
%0 Journal Article
%A S. Mészáros
%T Poisson Centralizer of the Trace
%J Journal of Lie theory
%D 2018
%P 309-322
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a0/
%F JLT_2018_28_2_JLT_2018_28_2_a0
S. Mészáros. Poisson Centralizer of the Trace. Journal of Lie theory, Tome 28 (2018) no. 2, pp. 309-322. http://geodesic.mathdoc.fr/item/JLT_2018_28_2_JLT_2018_28_2_a0/