Do n-Lie Algebras Have Universal Enveloping Algebras?
Journal of Lie theory, Tome 28 (2018) no. 1, pp. 43-55
The aim of this paper is to investigate in which sense, for $n\geq 3$, $n$-Lie algebras admit universal enveloping algebras. There have been some attempts at a construction (see A. S. Dzhumadil'daev, Representations of vector product $n$-{L}ie algebras, Comm.\ Algebra 32 (2004) 3315--3326, and D. B{\u{a}}libanu and J. van de Leur, Irreducible highest weight representations of the simple $n$-Lie algebra, Transform. Groups 17 (2012) 593--613), but after analysing those we come to the conclusion that they cannot be valid in general. We give counterexamples and sufficient conditions. \par We then study the problem in its full generality, showing that universality is incompatible with the wish that the category of modules over a given $n$-Lie algebra $L$ is equivalent to the category of modules over the associated algebra U$(L)$. Indeed, an {\it associated algebra functor} U: $n$-Lie$\to {\rm Alg}_\K$ inducing such an equivalence does exist, but this kind of functor never admits a right adjoint. \par We close the paper by introducing a (co)homology theory based on the associated algebra functor U.
Classification :
17B35
Mots-clés : n-Lie, n-Leibniz, universal enveloping algebra
Mots-clés : n-Lie, n-Leibniz, universal enveloping algebra
@article{JLT_2018_28_1_JLT_2018_28_1_a2,
author = {X. Garc{\'\i}a-Mart{\'\i}nez and R. Turdibaev and T. Van der Linden},
title = {Do {n-Lie} {Algebras} {Have} {Universal} {Enveloping} {Algebras?}},
journal = {Journal of Lie theory},
pages = {43--55},
year = {2018},
volume = {28},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JLT_2018_28_1_JLT_2018_28_1_a2/}
}
TY - JOUR AU - X. García-Martínez AU - R. Turdibaev AU - T. Van der Linden TI - Do n-Lie Algebras Have Universal Enveloping Algebras? JO - Journal of Lie theory PY - 2018 SP - 43 EP - 55 VL - 28 IS - 1 UR - http://geodesic.mathdoc.fr/item/JLT_2018_28_1_JLT_2018_28_1_a2/ ID - JLT_2018_28_1_JLT_2018_28_1_a2 ER -
X. García-Martínez; R. Turdibaev; T. Van der Linden. Do n-Lie Algebras Have Universal Enveloping Algebras?. Journal of Lie theory, Tome 28 (2018) no. 1, pp. 43-55. http://geodesic.mathdoc.fr/item/JLT_2018_28_1_JLT_2018_28_1_a2/