Square Integrable Representations of Reductive Lie Groups with Admissible Restriction to SL2(R)
Journal of Lie theory, Tome 27 (2017) no. 4, pp. 1033-1056
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We determine the irreducible square integrable representations of a reductive connected Lie group which admit an H-admissible restriction to a subgroup H locally isomorphic to SL2(R). We show that such a representation is holomorphic and we determine the essentially unique H with this property as well as multiplicity formulae.
Classification : 22E46, 17B10
Mots-clés : Discrete Series, branching laws, admissible restriction
@article{JLT_2017_27_4_JLT_2017_27_4_a7,
     author = {M. Duflo and E. Galina and J. A. Vargas},
     title = {Square {Integrable} {Representations} of {Reductive} {Lie} {Groups} with {Admissible} {Restriction} to {SL\protect\textsubscript{2}(R)}},
     journal = {Journal of Lie theory},
     pages = {1033--1056},
     year = {2017},
     volume = {27},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_4_JLT_2017_27_4_a7/}
}
TY  - JOUR
AU  - M. Duflo
AU  - E. Galina
AU  - J. A. Vargas
TI  - Square Integrable Representations of Reductive Lie Groups with Admissible Restriction to SL2(R)
JO  - Journal of Lie theory
PY  - 2017
SP  - 1033
EP  - 1056
VL  - 27
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2017_27_4_JLT_2017_27_4_a7/
ID  - JLT_2017_27_4_JLT_2017_27_4_a7
ER  - 
%0 Journal Article
%A M. Duflo
%A E. Galina
%A J. A. Vargas
%T Square Integrable Representations of Reductive Lie Groups with Admissible Restriction to SL2(R)
%J Journal of Lie theory
%D 2017
%P 1033-1056
%V 27
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2017_27_4_JLT_2017_27_4_a7/
%F JLT_2017_27_4_JLT_2017_27_4_a7
M. Duflo; E. Galina; J. A. Vargas. Square Integrable Representations of Reductive Lie Groups with Admissible Restriction to SL2(R). Journal of Lie theory, Tome 27 (2017) no. 4, pp. 1033-1056. http://geodesic.mathdoc.fr/item/JLT_2017_27_4_JLT_2017_27_4_a7/