Harish-Chandra's Schwartz Algebras Associated with Discrete Subgroups of Semisimple Lie Groups
Journal of Lie theory, Tome 27 (2017) no. 3, pp. 831-844
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We prove that the Harish-Chandra's Schwartz space associated with a discrete subgroup of a semisimple Lie group is a dense subalgebra of the reduced C*-algebra of the discrete subgroup. Then, we prove that the reduced C*-norm is controlled by the norm of the Harish-Chandra's Schwartz space. This inequality is weaker than property RD and holds for any discrete group acting isometrically, properly on a Riemannian symmetric space.
Classification : 46H15, 43A90, 22E40, 22D20, 22D25, 46L80
Mots-clés : Harish-Chandra's Schwartz spaces, semisimple Lie groups, Harish-Chandra functions, Furstenberg boundary, property RD, K-theory, Baum-Connes conjecture
@article{JLT_2017_27_3_JLT_2017_27_3_a9,
     author = {A. Boyer},
     title = {Harish-Chandra's {Schwartz} {Algebras} {Associated} with {Discrete} {Subgroups} of {Semisimple} {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {831--844},
     year = {2017},
     volume = {27},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a9/}
}
TY  - JOUR
AU  - A. Boyer
TI  - Harish-Chandra's Schwartz Algebras Associated with Discrete Subgroups of Semisimple Lie Groups
JO  - Journal of Lie theory
PY  - 2017
SP  - 831
EP  - 844
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a9/
ID  - JLT_2017_27_3_JLT_2017_27_3_a9
ER  - 
%0 Journal Article
%A A. Boyer
%T Harish-Chandra's Schwartz Algebras Associated with Discrete Subgroups of Semisimple Lie Groups
%J Journal of Lie theory
%D 2017
%P 831-844
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a9/
%F JLT_2017_27_3_JLT_2017_27_3_a9
A. Boyer. Harish-Chandra's Schwartz Algebras Associated with Discrete Subgroups of Semisimple Lie Groups. Journal of Lie theory, Tome 27 (2017) no. 3, pp. 831-844. http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a9/