Maximal Antipodal Subgroups of some Compact Classical Lie Groups
Journal of Lie theory, Tome 27 (2017) no. 3, pp. 801-829
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We classify maximal antipodal subgroups of the quotient groups of the compact classical Lie groups and explicitly describe them by using the dihedral group of order 8. The maximal antipodal subgroups are not unique up to conjugation in almost all cases.
Classification : 22E40, 53C35
Mots-clés : Antipodal subgroup, compact Lie group, polar
@article{JLT_2017_27_3_JLT_2017_27_3_a8,
     author = {M. S. Tanaka and H. Tasaki},
     title = {Maximal {Antipodal} {Subgroups} of some {Compact} {Classical} {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {801--829},
     year = {2017},
     volume = {27},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a8/}
}
TY  - JOUR
AU  - M. S. Tanaka
AU  - H. Tasaki
TI  - Maximal Antipodal Subgroups of some Compact Classical Lie Groups
JO  - Journal of Lie theory
PY  - 2017
SP  - 801
EP  - 829
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a8/
ID  - JLT_2017_27_3_JLT_2017_27_3_a8
ER  - 
%0 Journal Article
%A M. S. Tanaka
%A H. Tasaki
%T Maximal Antipodal Subgroups of some Compact Classical Lie Groups
%J Journal of Lie theory
%D 2017
%P 801-829
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a8/
%F JLT_2017_27_3_JLT_2017_27_3_a8
M. S. Tanaka; H. Tasaki. Maximal Antipodal Subgroups of some Compact Classical Lie Groups. Journal of Lie theory, Tome 27 (2017) no. 3, pp. 801-829. http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a8/