Local Lie Algebras and some Kac-Moody Algebras of Indefinite Type
Journal of Lie theory, Tome 27 (2017) no. 3, pp. 727-744
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We show a sufficient condition for an indefinite Kac-Moody algebra to admit a minimal Z-gradation with local part given by an integrable highest weight module. Examples of orbit Lie algebras arising from 2-fold affinization and Lorentzian Kac-Moody algebras are discussed.
Classification : 17B65, 17B67
Mots-clés : Local Lie algebras, Kac-Moody algebras, integrable highest weight modules, affine algebras
@article{JLT_2017_27_3_JLT_2017_27_3_a5,
     author = {H. Gan and Y. Tan},
     title = {Local {Lie} {Algebras} and some {Kac-Moody} {Algebras} of {Indefinite} {Type}},
     journal = {Journal of Lie theory},
     pages = {727--744},
     year = {2017},
     volume = {27},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a5/}
}
TY  - JOUR
AU  - H. Gan
AU  - Y. Tan
TI  - Local Lie Algebras and some Kac-Moody Algebras of Indefinite Type
JO  - Journal of Lie theory
PY  - 2017
SP  - 727
EP  - 744
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a5/
ID  - JLT_2017_27_3_JLT_2017_27_3_a5
ER  - 
%0 Journal Article
%A H. Gan
%A Y. Tan
%T Local Lie Algebras and some Kac-Moody Algebras of Indefinite Type
%J Journal of Lie theory
%D 2017
%P 727-744
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a5/
%F JLT_2017_27_3_JLT_2017_27_3_a5
H. Gan; Y. Tan. Local Lie Algebras and some Kac-Moody Algebras of Indefinite Type. Journal of Lie theory, Tome 27 (2017) no. 3, pp. 727-744. http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a5/