Quivers and Three Dimensional Solvable Lie Algebras
Journal of Lie theory, Tome 27 (2017) no. 3, pp. 707-726
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We study a family of three-dimensional solvable Lie algebras $L_\mu$ that depend on a continuous parameter $\mu$. We introduce certain quivers, which we denote by $Q_{m,n}$, $(m,n\in\mathbb{Z})$ and $Q_{\infty\times\infty}$, and prove that idempotented versions of the enveloping algebras of the Lie algebras $L_{\mu}$ are isomorphic to the path algebras of these quivers modulo certain ideals in the case that $\mu$ is rational and non-rational, respectively. We then show how the representation theory of the quivers $Q_{m,n}$ and $Q_{\infty\times\infty}$ can be related to the representation theory of quivers of affine type $A$, and use this relationship to study representations of the Lie algebras $L_\mu$. In particular, though it is known that the Lie algebras $L_\mu$ are of wild representation type, we show that if we impose certain restrictions on weight decompositions, we obtain natural full subcategories of the category of representations of $L_\mu$ that are of finite or tame representation type.
Classification : 17B10, 16G20, 22E47
Mots-clés : Lie algebra, quiver, path algebra, preprojective algebra, representation
@article{JLT_2017_27_3_JLT_2017_27_3_a4,
     author = {J. Pike},
     title = {Quivers and {Three} {Dimensional} {Solvable} {Lie} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {707--726},
     year = {2017},
     volume = {27},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a4/}
}
TY  - JOUR
AU  - J. Pike
TI  - Quivers and Three Dimensional Solvable Lie Algebras
JO  - Journal of Lie theory
PY  - 2017
SP  - 707
EP  - 726
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a4/
ID  - JLT_2017_27_3_JLT_2017_27_3_a4
ER  - 
%0 Journal Article
%A J. Pike
%T Quivers and Three Dimensional Solvable Lie Algebras
%J Journal of Lie theory
%D 2017
%P 707-726
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a4/
%F JLT_2017_27_3_JLT_2017_27_3_a4
J. Pike. Quivers and Three Dimensional Solvable Lie Algebras. Journal of Lie theory, Tome 27 (2017) no. 3, pp. 707-726. http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a4/