On Involutions in Weyl Groups
Journal of Lie theory, Tome 27 (2017) no. 3, pp. 671-706
Let $(W,S)$ be a Coxeter system and $\ast$ be an automorphism of $W$ with order $\leq 2$ such that $s^{\ast}\in S$ for any $s\in S$. Let $I_{\ast}$ be the set of twisted involutions relative to $\ast$ in $W$. In this paper we consider the case when $\ast={\rm id}$ and study the braid $I_\ast$-transformations between the reduced $I_\ast$-expressions of involutions. If $W$ is the Weyl group of type $B_n$ or $D_n$, we explicitly describe a finite set of basic braid $I_\ast$-transformations for all $n$ simultaneously, and show that any two reduced $I_\ast$-expressions for a given involution can be transformed into each other through a series of basic braid $I_\ast$-transformations. In both cases, these basic braid $I_\ast$-transformations consist of the usual basic braid transformations plus some natural ``right end transformations" and exactly one extra transformation. The main result generalizes our previous work for the Weyl group of type $A_{n}$.
Classification :
20F55, 20C08
Mots-clés : Weyl groups, Hecke algebras, twisted involutions
Mots-clés : Weyl groups, Hecke algebras, twisted involutions
@article{JLT_2017_27_3_JLT_2017_27_3_a3,
author = {J. Hu and J. Zhang},
title = {On {Involutions} in {Weyl} {Groups}},
journal = {Journal of Lie theory},
pages = {671--706},
year = {2017},
volume = {27},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a3/}
}
J. Hu; J. Zhang. On Involutions in Weyl Groups. Journal of Lie theory, Tome 27 (2017) no. 3, pp. 671-706. http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a3/