Local Coefficient Matrices and the Metaplectic Correspondence
Journal of Lie theory, Tome 27 (2017) no. 3, pp. 657-67
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

The local coefficients of a principal series representation of a metaplectic group are defined in terms of the action of the standard intertwining operator on a canonical basis of the space of Whittaker functionals. By analyzing the nonsingularity of local coefficient matrices, we prove that for a certain class of unramified principal series representations of the metaplectic group, the local metaplectic correspondence preserves irreducibility.
Classification : 22D30, 11F32, 11F70, 11F85
Mots-clés : Principal series, automorphic forms, Shimura's correspondence
@article{JLT_2017_27_3_JLT_2017_27_3_a2,
     author = {M. Budden and G. Goehle},
     title = {Local {Coefficient} {Matrices} and the {Metaplectic} {Correspondence}},
     journal = {Journal of Lie theory},
     pages = {657--67},
     year = {2017},
     volume = {27},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a2/}
}
TY  - JOUR
AU  - M. Budden
AU  - G. Goehle
TI  - Local Coefficient Matrices and the Metaplectic Correspondence
JO  - Journal of Lie theory
PY  - 2017
SP  - 657
EP  - 67
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a2/
ID  - JLT_2017_27_3_JLT_2017_27_3_a2
ER  - 
%0 Journal Article
%A M. Budden
%A G. Goehle
%T Local Coefficient Matrices and the Metaplectic Correspondence
%J Journal of Lie theory
%D 2017
%P 657-67
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a2/
%F JLT_2017_27_3_JLT_2017_27_3_a2
M. Budden; G. Goehle. Local Coefficient Matrices and the Metaplectic Correspondence. Journal of Lie theory, Tome 27 (2017) no. 3, pp. 657-67. http://geodesic.mathdoc.fr/item/JLT_2017_27_3_JLT_2017_27_3_a2/