Rigidity of Bott-Samelson-Demazure-Hansen Variety for PSp(2n, C)
Journal of Lie theory, Tome 27 (2017) no. 2, pp. 435-468
\def\C{{\Bbb C}} Let $G=PSp(2n, \C)$ ($n\ge 3$) and $B$ be a Borel subgroup of $G$ containing a maximal torus $T$ of $G$. Let $w$ be an element of the Weyl group $W$ and $X(w)$ be the Schubert variety in the flag variety $G/B$ corresponding to $w$. Let $Z(w,\underline i)$ be the Bott-Samelson-Demazure-Hansen variety (the desingularization of $X(w)$) corresponding to a reduced expression $\underline i$ of $w$.\par In this article, we study the cohomology groups of the tangent bundle on $Z(w_0, \underline i)$, where $w_0$ is the longest element of the Weyl group $W$. We describe all the reduced expressions $\underline i$ of $w_0$ in terms of a Coxeter element such that all the higher cohomology groups of the tangent bundle on $Z(w_0, \underline i)$ vanish.
Classification :
14F17, 14M15
Mots-clés : Bott-Samelson-Demazure-Hansen variety, Coxeter element, tangent bundle
Mots-clés : Bott-Samelson-Demazure-Hansen variety, Coxeter element, tangent bundle
@article{JLT_2017_27_2_JLT_2017_27_2_a7,
author = {B. N. Chary and S. S. Kannan},
title = {Rigidity of {Bott-Samelson-Demazure-Hansen} {Variety} for {PSp(2n,} {C)}},
journal = {Journal of Lie theory},
pages = {435--468},
year = {2017},
volume = {27},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a7/}
}
B. N. Chary; S. S. Kannan. Rigidity of Bott-Samelson-Demazure-Hansen Variety for PSp(2n, C). Journal of Lie theory, Tome 27 (2017) no. 2, pp. 435-468. http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a7/