Tulczyjew's Triplet for Lie Groups. II: Dynamics
Journal of Lie theory, Tome 27 (2017) no. 2, pp. 329-356
Cet article a éte moissonné depuis la source Heldermann Verlag
Taking configuration space as a Lie group, the trivialized Euler-Lagrange and Hamilton's equations are obtained and presented as Lagrangian submanifolds of the trivialized Tulczyjew's symplectic space. Euler-Poincaré and Lie-Poisson equations are presented as Lagrangian submanifolds of the reduced Tulczyjew's symplectic space. Tulczyjew's generalized Legendre transformations for trivialized and reduced dynamics are constructed.
Classification :
22E65, 22E60, 22E70, 37E65, 70K65, 70H03, 70H05
Mots-clés : Trivialized Euler-Lagrange equations, trivialized Hamilton's equations, Euler-Poincaré equations, Lie-Poisson equations, Morse families, Tulczyjew's triplet, Legendre transformation, Lagrangian submanifold, diffeomorphisms group
Mots-clés : Trivialized Euler-Lagrange equations, trivialized Hamilton's equations, Euler-Poincaré equations, Lie-Poisson equations, Morse families, Tulczyjew's triplet, Legendre transformation, Lagrangian submanifold, diffeomorphisms group
@article{JLT_2017_27_2_JLT_2017_27_2_a2,
author = {O. Esen and H. G\"umral},
title = {Tulczyjew's {Triplet} for {Lie} {Groups.} {II:} {Dynamics}},
journal = {Journal of Lie theory},
pages = {329--356},
year = {2017},
volume = {27},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a2/}
}
O. Esen; H. Gümral. Tulczyjew's Triplet for Lie Groups. II: Dynamics. Journal of Lie theory, Tome 27 (2017) no. 2, pp. 329-356. http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a2/