A New Z3-Graded Quantum Group
Journal of Lie theory, Tome 27 (2017) no. 2, pp. 545-554
\def\Z{{\mathbb Z}} We introduce a ${\Z}_3$-graded version of the exterior (Grassmann) algebra with two generators. Using this object we obtain a new ${\Z}_3$-graded quantum group denoted by ${\cal O}(\widetilde{GL}_q(2))$ and discuss some of its properties.
Classification :
17B37, 81R60
Mots-clés : Z-3-graded exterior algebra, Z-3-graded quantum group, Z-3-graded Hopf algebra
Mots-clés : Z-3-graded exterior algebra, Z-3-graded quantum group, Z-3-graded Hopf algebra
@article{JLT_2017_27_2_JLT_2017_27_2_a11,
author = {S. Celik},
title = {A {New} {Z\protect\textsubscript{3}-Graded} {Quantum} {Group}},
journal = {Journal of Lie theory},
pages = {545--554},
year = {2017},
volume = {27},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a11/}
}
S. Celik. A New Z3-Graded Quantum Group. Journal of Lie theory, Tome 27 (2017) no. 2, pp. 545-554. http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a11/