Cohomology of N-Graded Lie Algebras of Maximal Class over Z2
Journal of Lie theory, Tome 27 (2017) no. 2, pp. 529-544
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

\def\m{{\frak m}} \def\Z{{\Bbb Z}} We compute the cohomology with trivial coefficients of Lie algebras $\m_0$ and $\m_2$ of maximal class over the field $\Z_2$. In the infinite-dimensional case, we show that the cohomology rings $H^*(\m_0)$ and $H^*(\m_2)$ are isomorphic, in contrast to the case of the ground field of characteristic zero, and we obtain a complete description of them. In the finite-dimensional case, we find the first three Betti numbers of $\m_0(n)$ and $\m_2(n)$ over $\Z_2$.
Classification : 17B56, 17B50, 17B70, 17B65, 17B30
Mots-clés : Lie algebra of maximal class, characteristic 2, cohomology, Betti number
@article{JLT_2017_27_2_JLT_2017_27_2_a10,
     author = {Y. Nikolayevsky and I. Tsartsaflis},
     title = {Cohomology of {N-Graded} {Lie} {Algebras} of {Maximal} {Class} over {Z\protect\textsubscript{2}}},
     journal = {Journal of Lie theory},
     pages = {529--544},
     year = {2017},
     volume = {27},
     number = {2},
     url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a10/}
}
TY  - JOUR
AU  - Y. Nikolayevsky
AU  - I. Tsartsaflis
TI  - Cohomology of N-Graded Lie Algebras of Maximal Class over Z2
JO  - Journal of Lie theory
PY  - 2017
SP  - 529
EP  - 544
VL  - 27
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a10/
ID  - JLT_2017_27_2_JLT_2017_27_2_a10
ER  - 
%0 Journal Article
%A Y. Nikolayevsky
%A I. Tsartsaflis
%T Cohomology of N-Graded Lie Algebras of Maximal Class over Z2
%J Journal of Lie theory
%D 2017
%P 529-544
%V 27
%N 2
%U http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a10/
%F JLT_2017_27_2_JLT_2017_27_2_a10
Y. Nikolayevsky; I. Tsartsaflis. Cohomology of N-Graded Lie Algebras of Maximal Class over Z2. Journal of Lie theory, Tome 27 (2017) no. 2, pp. 529-544. http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a10/