Cohomological Rigidity of the Schrödinger Algebra S(N) and its Central Extension hat(S(N))
Journal of Lie theory, Tome 27 (2017) no. 2, pp. 315-328
Cet article a éte moissonné depuis la source Heldermann Verlag
It is shown that for any $N\neq 2$, the Schr\"odinger algebra $S(N)$ and its central extension $\widehat{S}(N)$ are cohomologically rigid Lie algebras, i.e., have a vanishing second Chevalley cohomology group with values in the adjoint representation. Further, it is shown that the main cohomological difference between these algebras lies in the structure of the third cohomology space.
Classification :
17B10, 17B56
Mots-clés : Rigidity, Chevalley cohomology, Schroedinger algebra, Lie algebras
Mots-clés : Rigidity, Chevalley cohomology, Schroedinger algebra, Lie algebras
@article{JLT_2017_27_2_JLT_2017_27_2_a1,
author = {R. Campoamor-Stursberg},
title = {Cohomological {Rigidity} of the {Schr\"odinger} {Algebra} {S(N)} and its {Central} {Extension} {hat(S(N))}},
journal = {Journal of Lie theory},
pages = {315--328},
year = {2017},
volume = {27},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a1/}
}
TY - JOUR AU - R. Campoamor-Stursberg TI - Cohomological Rigidity of the Schrödinger Algebra S(N) and its Central Extension hat(S(N)) JO - Journal of Lie theory PY - 2017 SP - 315 EP - 328 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a1/ ID - JLT_2017_27_2_JLT_2017_27_2_a1 ER -
R. Campoamor-Stursberg. Cohomological Rigidity of the Schrödinger Algebra S(N) and its Central Extension hat(S(N)). Journal of Lie theory, Tome 27 (2017) no. 2, pp. 315-328. http://geodesic.mathdoc.fr/item/JLT_2017_27_2_JLT_2017_27_2_a1/