On the Integral Representations for Dunkl Kernels of Type A2
Journal of Lie theory, Tome 26 (2016) no. 4, pp. 1163-1175
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We give an explicit integral formula for the Dunkl kernel associated to root system of type A2 and parameter k > 0, by exploiting previous results of B. Amri [Note on Bessel functions of type AN-1, Integral Transforms and Special Functions 25 (2014) 448--461].
Classification : 33E30, 17B22,20F55
Mots-clés : Dunkl operators, root systems, reflection groups
@article{JLT_2016_26_4_JLT_2016_26_4_a9,
     author = {B. Amri},
     title = {On the {Integral} {Representations} for {Dunkl} {Kernels} of {Type} {A\protect\textsubscript{2}}},
     journal = {Journal of Lie theory},
     pages = {1163--1175},
     year = {2016},
     volume = {26},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a9/}
}
TY  - JOUR
AU  - B. Amri
TI  - On the Integral Representations for Dunkl Kernels of Type A2
JO  - Journal of Lie theory
PY  - 2016
SP  - 1163
EP  - 1175
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a9/
ID  - JLT_2016_26_4_JLT_2016_26_4_a9
ER  - 
%0 Journal Article
%A B. Amri
%T On the Integral Representations for Dunkl Kernels of Type A2
%J Journal of Lie theory
%D 2016
%P 1163-1175
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a9/
%F JLT_2016_26_4_JLT_2016_26_4_a9
B. Amri. On the Integral Representations for Dunkl Kernels of Type A2. Journal of Lie theory, Tome 26 (2016) no. 4, pp. 1163-1175. http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a9/