Toroidal Affine Nash Groups
Journal of Lie theory, Tome 26 (2016) no. 4, pp. 1069-1077
A toroidal affine Nash group is the affine Nash group analogue of an anti-affine algebraic group. In this note, we prove analogues of Rosenlicht's structure and decomposition theorems: (1) Every affine Nash group $G$ has a smallest normal affine Nash subgroup $H$ such that $G/H$ is an almost linear affine Nash group, and this $H$ is toroidal. (2) If $G$ is a connected affine Nash group, then there exist a largest toroidal affine Nash subgroup $G_{\rm ant}$ and a largest connected, normal, almost linear affine Nash subgroup $G_{\rm aff}$. Moreover, we have $G=G_{\rm ant}G_{\rm aff}$, and $G_{\rm ant}\cap G_{\rm aff}$ contains $(G_{\rm ant})_{\rm aff}$ as an affine Nash subgroup of finite index.
Classification :
22E15, 14L10, 14P20
Mots-clés : Real algebraic groups, anti-affine algebraic groups, Rosenlicht's theorem, affine Nash groups, abelian groups
Mots-clés : Real algebraic groups, anti-affine algebraic groups, Rosenlicht's theorem, affine Nash groups, abelian groups
@article{JLT_2016_26_4_JLT_2016_26_4_a5,
author = {M. B. Can},
title = {Toroidal {Affine} {Nash} {Groups}},
journal = {Journal of Lie theory},
pages = {1069--1077},
year = {2016},
volume = {26},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a5/}
}
M. B. Can. Toroidal Affine Nash Groups. Journal of Lie theory, Tome 26 (2016) no. 4, pp. 1069-1077. http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a5/