Norm Computation and Analytic Continuation of Vector Valued Holomorphic Discrete Series Representations
Journal of Lie theory, Tome 26 (2016) no. 4, pp. 927-99
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We compute explicitly the norm of the vector-valued holomorphic discrete series representations, when its K-type is "almost multiplicity-free". As an application, we discuss the properties of highest weight modules, such as unitarizability, reducibility and composition series.
Classification : 22E45, 43A85, 17C30
Mots-clés : Holomorphic discrete series representations, highest weight modules, Jordan triple systems, composition series
@article{JLT_2016_26_4_JLT_2016_26_4_a1,
     author = {R. Nakahama},
     title = {Norm {Computation} and {Analytic} {Continuation} of {Vector} {Valued} {Holomorphic} {Discrete} {Series} {Representations}},
     journal = {Journal of Lie theory},
     pages = {927--99},
     year = {2016},
     volume = {26},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a1/}
}
TY  - JOUR
AU  - R. Nakahama
TI  - Norm Computation and Analytic Continuation of Vector Valued Holomorphic Discrete Series Representations
JO  - Journal of Lie theory
PY  - 2016
SP  - 927
EP  - 99
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a1/
ID  - JLT_2016_26_4_JLT_2016_26_4_a1
ER  - 
%0 Journal Article
%A R. Nakahama
%T Norm Computation and Analytic Continuation of Vector Valued Holomorphic Discrete Series Representations
%J Journal of Lie theory
%D 2016
%P 927-99
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a1/
%F JLT_2016_26_4_JLT_2016_26_4_a1
R. Nakahama. Norm Computation and Analytic Continuation of Vector Valued Holomorphic Discrete Series Representations. Journal of Lie theory, Tome 26 (2016) no. 4, pp. 927-99. http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a1/