Norm Computation and Analytic Continuation of Vector Valued Holomorphic Discrete Series Representations
Journal of Lie theory, Tome 26 (2016) no. 4, pp. 927-99
We compute explicitly the norm of the vector-valued holomorphic discrete series representations, when its K-type is "almost multiplicity-free". As an application, we discuss the properties of highest weight modules, such as unitarizability, reducibility and composition series.
Classification :
22E45, 43A85, 17C30
Mots-clés : Holomorphic discrete series representations, highest weight modules, Jordan triple systems, composition series
Mots-clés : Holomorphic discrete series representations, highest weight modules, Jordan triple systems, composition series
@article{JLT_2016_26_4_JLT_2016_26_4_a1,
author = {R. Nakahama},
title = {Norm {Computation} and {Analytic} {Continuation} of {Vector} {Valued} {Holomorphic} {Discrete} {Series} {Representations}},
journal = {Journal of Lie theory},
pages = {927--99},
year = {2016},
volume = {26},
number = {4},
url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a1/}
}
TY - JOUR AU - R. Nakahama TI - Norm Computation and Analytic Continuation of Vector Valued Holomorphic Discrete Series Representations JO - Journal of Lie theory PY - 2016 SP - 927 EP - 99 VL - 26 IS - 4 UR - http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a1/ ID - JLT_2016_26_4_JLT_2016_26_4_a1 ER -
R. Nakahama. Norm Computation and Analytic Continuation of Vector Valued Holomorphic Discrete Series Representations. Journal of Lie theory, Tome 26 (2016) no. 4, pp. 927-99. http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a1/