An 1-Differentiable Cohomology Induced by a Vector Field
Journal of Lie theory, Tome 26 (2016) no. 4, pp. 911-926
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

Using the Lie derivative of a vector field, we define a cohomology on spaces of pairs of differential forms (or 1-differentiable forms) in a manifold. We provide a link to the classical de Rham cohomology and to a 1-differentiable cohomology of Lichnerowicz type associated to an one-form. We discuss also the case of a complex manifold and a holomorphic vector field. Finally, an application to the harmonicity of 1-differentiable forms is studied in a particular case.
Classification : 14F40, 57R99, 58A10, 58A12
Mots-clés : 1-differentiable form, Lie derivative, vector field, cohomology, harmonic form
@article{JLT_2016_26_4_JLT_2016_26_4_a0,
     author = {M. Crasmareanu and C. Ida and P. Popescu},
     title = {An {1-Differentiable} {Cohomology} {Induced} by a {Vector} {Field}},
     journal = {Journal of Lie theory},
     pages = {911--926},
     year = {2016},
     volume = {26},
     number = {4},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a0/}
}
TY  - JOUR
AU  - M. Crasmareanu
AU  - C. Ida
AU  - P. Popescu
TI  - An 1-Differentiable Cohomology Induced by a Vector Field
JO  - Journal of Lie theory
PY  - 2016
SP  - 911
EP  - 926
VL  - 26
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a0/
ID  - JLT_2016_26_4_JLT_2016_26_4_a0
ER  - 
%0 Journal Article
%A M. Crasmareanu
%A C. Ida
%A P. Popescu
%T An 1-Differentiable Cohomology Induced by a Vector Field
%J Journal of Lie theory
%D 2016
%P 911-926
%V 26
%N 4
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a0/
%F JLT_2016_26_4_JLT_2016_26_4_a0
M. Crasmareanu; C. Ida; P. Popescu. An 1-Differentiable Cohomology Induced by a Vector Field. Journal of Lie theory, Tome 26 (2016) no. 4, pp. 911-926. http://geodesic.mathdoc.fr/item/JLT_2016_26_4_JLT_2016_26_4_a0/