Normalisers of Abelian Ideals of a Borel Subalgebra and Z-Gradings of a Simple Lie Algebra
Journal of Lie theory, Tome 26 (2016) no. 3, pp. 659-672
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

Let g be a simple Lie algebra and Ab the poset of all abelian ideals of a fixed Borel subalgebra of g. If a is an element of Ab, then the normaliser of a is a standard parabolic subalgebra of g. We give an explicit description of the normaliser for a class of abelian ideals that includes all maximal abelian ideals. We also elaborate on a relationship between abelian ideals and Z-gradings of g associated with their normalisers.
Classification : 17B20, 17B22, 20F55
Mots-clés : Root system, Borel subalgebra, minuscule element, abelian ideal
@article{JLT_2016_26_3_JLT_2016_26_3_a2,
     author = {D. I. Panyushev},
     title = {Normalisers of {Abelian} {Ideals} of a {Borel} {Subalgebra} and {Z-Gradings} of a {Simple} {Lie} {Algebra}},
     journal = {Journal of Lie theory},
     pages = {659--672},
     year = {2016},
     volume = {26},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a2/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - Normalisers of Abelian Ideals of a Borel Subalgebra and Z-Gradings of a Simple Lie Algebra
JO  - Journal of Lie theory
PY  - 2016
SP  - 659
EP  - 672
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a2/
ID  - JLT_2016_26_3_JLT_2016_26_3_a2
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T Normalisers of Abelian Ideals of a Borel Subalgebra and Z-Gradings of a Simple Lie Algebra
%J Journal of Lie theory
%D 2016
%P 659-672
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a2/
%F JLT_2016_26_3_JLT_2016_26_3_a2
D. I. Panyushev. Normalisers of Abelian Ideals of a Borel Subalgebra and Z-Gradings of a Simple Lie Algebra. Journal of Lie theory, Tome 26 (2016) no. 3, pp. 659-672. http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a2/