Upper Bound for the Gromov Width of Coadjoint Orbits of Compact Lie Groups
Journal of Lie theory, Tome 26 (2016) no. 3, pp. 821-86
We find an upper bound for the Gromov width of coadjoint orbits of compact Lie groups with respect to the Kostant-Kirillov-Souriau symplectic form by computing certain Gromov-Witten invariants. The approach presented here is closely related to the one used by Gromov in his celebrated non-squeezing theorem.
Classification :
53D45, 57R17, 14M15
Mots-clés : Gromov-Witten invariants, Gromov's width, coadjoint orbits, Schubert varieties
Mots-clés : Gromov-Witten invariants, Gromov's width, coadjoint orbits, Schubert varieties
@article{JLT_2016_26_3_JLT_2016_26_3_a13,
author = {A. Caviedes Castro},
title = {Upper {Bound} for the {Gromov} {Width} of {Coadjoint} {Orbits} of {Compact} {Lie} {Groups}},
journal = {Journal of Lie theory},
pages = {821--86},
year = {2016},
volume = {26},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a13/}
}
A. Caviedes Castro. Upper Bound for the Gromov Width of Coadjoint Orbits of Compact Lie Groups. Journal of Lie theory, Tome 26 (2016) no. 3, pp. 821-86. http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a13/