Upper Bound for the Gromov Width of Coadjoint Orbits of Compact Lie Groups
Journal of Lie theory, Tome 26 (2016) no. 3, pp. 821-86
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We find an upper bound for the Gromov width of coadjoint orbits of compact Lie groups with respect to the Kostant-Kirillov-Souriau symplectic form by computing certain Gromov-Witten invariants. The approach presented here is closely related to the one used by Gromov in his celebrated non-squeezing theorem.
Classification : 53D45, 57R17, 14M15
Mots-clés : Gromov-Witten invariants, Gromov's width, coadjoint orbits, Schubert varieties
@article{JLT_2016_26_3_JLT_2016_26_3_a13,
     author = {A. Caviedes Castro},
     title = {Upper {Bound} for the {Gromov} {Width} of {Coadjoint} {Orbits} of {Compact} {Lie} {Groups}},
     journal = {Journal of Lie theory},
     pages = {821--86},
     year = {2016},
     volume = {26},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a13/}
}
TY  - JOUR
AU  - A. Caviedes Castro
TI  - Upper Bound for the Gromov Width of Coadjoint Orbits of Compact Lie Groups
JO  - Journal of Lie theory
PY  - 2016
SP  - 821
EP  - 86
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a13/
ID  - JLT_2016_26_3_JLT_2016_26_3_a13
ER  - 
%0 Journal Article
%A A. Caviedes Castro
%T Upper Bound for the Gromov Width of Coadjoint Orbits of Compact Lie Groups
%J Journal of Lie theory
%D 2016
%P 821-86
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a13/
%F JLT_2016_26_3_JLT_2016_26_3_a13
A. Caviedes Castro. Upper Bound for the Gromov Width of Coadjoint Orbits of Compact Lie Groups. Journal of Lie theory, Tome 26 (2016) no. 3, pp. 821-86. http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a13/