Spin Norm, K-Types, and Tempered Representations
Journal of Lie theory, Tome 26 (2016) no. 3, pp. 651-658
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

We extend the notion spin norm slightly to a real reductive Lie group G in the Harish-Chandra class. Let K be a maximal compact subgroup of G. In this setting, the spin norm of any K-type π is still bounded from below by its lambda norm. We establish a bijection between irreducible tempered (g, K)-modules with nonzero Dirac cohomology and those K-types whose spin norm equals their lambda norm.
Classification : 22E46
Mots-clés : Dirac cohomology, K-types, spin norm, tempered representation
@article{JLT_2016_26_3_JLT_2016_26_3_a1,
     author = {J. Ding and C.-P. Dong},
     title = {Spin {Norm,} {K-Types,} and {Tempered} {Representations}},
     journal = {Journal of Lie theory},
     pages = {651--658},
     year = {2016},
     volume = {26},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a1/}
}
TY  - JOUR
AU  - J. Ding
AU  - C.-P. Dong
TI  - Spin Norm, K-Types, and Tempered Representations
JO  - Journal of Lie theory
PY  - 2016
SP  - 651
EP  - 658
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a1/
ID  - JLT_2016_26_3_JLT_2016_26_3_a1
ER  - 
%0 Journal Article
%A J. Ding
%A C.-P. Dong
%T Spin Norm, K-Types, and Tempered Representations
%J Journal of Lie theory
%D 2016
%P 651-658
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a1/
%F JLT_2016_26_3_JLT_2016_26_3_a1
J. Ding; C.-P. Dong. Spin Norm, K-Types, and Tempered Representations. Journal of Lie theory, Tome 26 (2016) no. 3, pp. 651-658. http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a1/