Visible Actions on Spherical Nilpotent Orbits in Complex Simple Lie Algebras
Journal of Lie theory, Tome 26 (2016) no. 3, pp. 597-649
Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

This paper studies nilpotent orbits in complex simple Lie algebras from the viewpoint of strongly visible actions in the sense of T. Kobayashi. We prove that the action of a maximal compact group consisting of inner automorphisms on a nilpotent orbit is strongly visible if and only if it is spherical, namely, admitting an open orbit of a Borel subgroup. Further, we find a concrete description of a slice in the strongly visible action. As a corollary, we clarify a relationship among different notions of complex nilpotent orbits: actions of Borel subgroups (sphericity); multiplicity-free representations in regular functions; momentum maps; and actions of compact subgroups (strongly visible actions).
Classification : 22E46, 32M10, 32M05, 14M17
Mots-clés : Visible action, multiplicity-free representation, nilpotent orbit, induction theorem
@article{JLT_2016_26_3_JLT_2016_26_3_a0,
     author = {A. Sasaki},
     title = {Visible {Actions} on {Spherical} {Nilpotent} {Orbits} in {Complex} {Simple} {Lie} {Algebras}},
     journal = {Journal of Lie theory},
     pages = {597--649},
     year = {2016},
     volume = {26},
     number = {3},
     url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a0/}
}
TY  - JOUR
AU  - A. Sasaki
TI  - Visible Actions on Spherical Nilpotent Orbits in Complex Simple Lie Algebras
JO  - Journal of Lie theory
PY  - 2016
SP  - 597
EP  - 649
VL  - 26
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a0/
ID  - JLT_2016_26_3_JLT_2016_26_3_a0
ER  - 
%0 Journal Article
%A A. Sasaki
%T Visible Actions on Spherical Nilpotent Orbits in Complex Simple Lie Algebras
%J Journal of Lie theory
%D 2016
%P 597-649
%V 26
%N 3
%U http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a0/
%F JLT_2016_26_3_JLT_2016_26_3_a0
A. Sasaki. Visible Actions on Spherical Nilpotent Orbits in Complex Simple Lie Algebras. Journal of Lie theory, Tome 26 (2016) no. 3, pp. 597-649. http://geodesic.mathdoc.fr/item/JLT_2016_26_3_JLT_2016_26_3_a0/