Pseudogroups via Pseudoactions: Unifying Local, Global, and Infinitesimal Symmetry
Journal of Lie theory, Tome 26 (2016) no. 2, pp. 535-565
Cet article a éte moissonné depuis la source Heldermann Verlag
A multiplicatively closed, horizontal foliation on a Lie groupoid may be viewed as a "pseudoaction" on the base manifold M. A pseudoaction generates a pseudogroup of transformations of M in the same way an ordinary Lie group action generates a transformation group. Infinitesimalizing a pseudoaction, one obtains the action of a Lie algebra on M, possibly twisted. A global converse to Lie's third theorem proven here states that every twisted Lie algebra action is integrated by a pseudoaction. When the twisted Lie algebra action is complete it integrates to a twisted Lie group action, according to a generalization of Palais' global integrability theorem.
Classification :
58H05, 58D19
Mots-clés : Lie algebroid, pseudogroup, Cartan connection, Lie algebra, pseudoaction
Mots-clés : Lie algebroid, pseudogroup, Cartan connection, Lie algebra, pseudoaction
@article{JLT_2016_26_2_JLT_2016_26_2_a7,
author = {A. D. Blaom},
title = {Pseudogroups via {Pseudoactions:} {Unifying} {Local,} {Global,} and {Infinitesimal} {Symmetry}},
journal = {Journal of Lie theory},
pages = {535--565},
year = {2016},
volume = {26},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a7/}
}
A. D. Blaom. Pseudogroups via Pseudoactions: Unifying Local, Global, and Infinitesimal Symmetry. Journal of Lie theory, Tome 26 (2016) no. 2, pp. 535-565. http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a7/