Multivariate Meixner, Charlier and Krawtchouk Polynomials According to Analysis on Symmetric Cones
Journal of Lie theory, Tome 26 (2016) no. 2, pp. 439-477
We introduce some multivariate analogues of Meixner, Charlier and Krawtchouk polynomials, and establish their main properties by using analysis on symmetric cones, that is, duality, degenerate limits, generating functions, orthogonality relations, difference equations, recurrence formulas and determinant expressions. A particularly important and interesting result is that "the generating function of the generating functions" for the Meixner polynomials coincides with the generating function of the Laguerre polynomials, which has previously not been known even for the one variable case. Actually, main properties for the multivariate Meixner, Charlier and Krawtchouk polynomials are derived from some properties of the multivariate Laguerre polynomials by using this key result.
Classification :
32M15, 33C45, 43A90
Mots-clés : Multivariate analysis, discrete orthogonal polynomials, symmetric cones, spherical polynomials, generalized binomial coefficients
Mots-clés : Multivariate analysis, discrete orthogonal polynomials, symmetric cones, spherical polynomials, generalized binomial coefficients
@article{JLT_2016_26_2_JLT_2016_26_2_a4,
author = {G. Shibukawa},
title = {Multivariate {Meixner,} {Charlier} and {Krawtchouk} {Polynomials} {According} to {Analysis} on {Symmetric} {Cones}},
journal = {Journal of Lie theory},
pages = {439--477},
year = {2016},
volume = {26},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a4/}
}
TY - JOUR AU - G. Shibukawa TI - Multivariate Meixner, Charlier and Krawtchouk Polynomials According to Analysis on Symmetric Cones JO - Journal of Lie theory PY - 2016 SP - 439 EP - 477 VL - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a4/ ID - JLT_2016_26_2_JLT_2016_26_2_a4 ER -
G. Shibukawa. Multivariate Meixner, Charlier and Krawtchouk Polynomials According to Analysis on Symmetric Cones. Journal of Lie theory, Tome 26 (2016) no. 2, pp. 439-477. http://geodesic.mathdoc.fr/item/JLT_2016_26_2_JLT_2016_26_2_a4/